Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 82(18): 3499-3512.e10, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35973427

RESUMEN

Understanding how bactericidal antibiotics kill bacteria remains an open question. Previous work has proposed that primary drug-target corruption leads to increased energetic demands, resulting in the generation of reactive metabolic byproducts (RMBs), particularly reactive oxygen species, that contribute to antibiotic-induced cell death. Studies have challenged this hypothesis by pointing to antibiotic lethality under anaerobic conditions. Here, we show that treatment of Escherichia coli with bactericidal antibiotics under anaerobic conditions leads to changes in the intracellular concentrations of central carbon metabolites, as well as the production of RMBs, particularly reactive electrophilic species (RES). We show that antibiotic treatment results in DNA double-strand breaks and membrane damage and demonstrate that antibiotic lethality under anaerobic conditions can be decreased by RMB scavengers, which reduce RES accumulation and mitigate associated macromolecular damage. This work indicates that RMBs, generated in response to antibiotic-induced energetic demands, contribute in part to antibiotic lethality under anaerobic conditions.


Asunto(s)
Antibacterianos , Escherichia coli , Anaerobiosis , Antibacterianos/metabolismo , Antibacterianos/farmacología , Carbono/metabolismo , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Cell Chem Biol ; 29(2): 276-286.e4, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34990601

RESUMEN

ß-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that ß-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by ß-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the ß-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for ß-lactam antibiotic lethality.


Asunto(s)
Amdinocilina/farmacología , Antibacterianos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Amdinocilina/química , Antibacterianos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Homeostasis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/metabolismo
3.
Science ; 371(6531)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602825

RESUMEN

Although metabolism plays an active role in antibiotic lethality, antibiotic resistance is generally associated with drug target modification, enzymatic inactivation, and/or transport rather than metabolic processes. Evolution experiments of Escherichia coli rely on growth-dependent selection, which may provide a limited view of the antibiotic resistance landscape. We sequenced and analyzed E. coli adapted to representative antibiotics at increasingly heightened metabolic states. This revealed various underappreciated noncanonical genes, such as those related to central carbon and energy metabolism, which are implicated in antibiotic resistance. These metabolic alterations lead to lower basal respiration, which prevents antibiotic-mediated induction of tricarboxylic acid cycle activity, thus avoiding metabolic toxicity and minimizing drug lethality. Several of the identified metabolism-specific mutations are overrepresented in the genomes of >3500 clinical E. coli pathogens, indicating clinical relevance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Genes Bacterianos , Mutación , Adaptación Fisiológica , Carbenicilina/farmacología , Ciprofloxacina/farmacología , Ciclo del Ácido Cítrico/genética , Evolución Molecular Dirigida , Metabolismo Energético/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Genoma Bacteriano , Complejo Cetoglutarato Deshidrogenasa/genética , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia de ADN , Estreptomicina/farmacología
4.
Curr Opin Microbiol ; 39: 73-80, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29049930

RESUMEN

Antibiotic lethality is a complex physiological process, sensitive to external cues. Recent advances using systems approaches have revealed how events downstream of primary target inhibition actively participate in antibiotic death processes. In particular, altered metabolism, translational stress and DNA damage each contribute to antibiotic-induced cell death. Moreover, environmental factors such as oxygen availability, extracellular metabolites, population heterogeneity and multidrug contexts alter antibiotic efficacy by impacting bacterial metabolism and stress responses. Here we review recent studies on antibiotic efficacy and highlight insights gained on the involvement of cellular respiration, redox stress and altered metabolism in antibiotic lethality. We discuss the complexity found in natural environments and highlight knowledge gaps in antibiotic lethality that may be addressed using systems approaches.


Asunto(s)
Antibacterianos , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Ambiente , Modelos Biológicos , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA