Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 78(2): 375-382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37199825

RESUMEN

This study investigated the physico-chemical and textural properties of 3D-printed pea protein-only and pea protein-chicken-based hybrid meat analogs. Both pea protein isolate (PPI)-only and hybrid cooked meat analogs had a similar moisture content of approximately 70%, which was similar to that of chicken mince. However, the protein content increased significantly with the amount of chicken in the hybrid paste undergoing 3D printing and cooking. Significant differences were observed in the hardness values of the non-printed cooked pastes and the 3D printed cooked counterparts, suggesting that the 3D printing process reduces the hardness of the samples and is a suitable method to produce a soft meal, and has significant potential in elderly health care. Scanning electron microscopy (SEM) revealed that adding chicken to the plant protein matrix led to better fiber formation. PPI itself was not able to form any fibers merely by 3D printing and cooking in boiling water. Protein-protein interactions were also studied through the protein solubility test, which indicated that hydrogen bonding was the major bonding that contributed to the structure formation in cooked printed meat analogs. In addition, disulfide bonding was correlated with improved fibrous structures, as observed through SEM.


Asunto(s)
Proteínas de Guisantes , Carne/análisis , Culinaria/métodos , Impresión Tridimensional
2.
Compr Rev Food Sci Food Saf ; 20(2): 1221-1249, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33590609

RESUMEN

Increasing awareness of inefficient meat production and its future impact on global food security has led the food industry to look for a sustainable approach. Meat products have superior sensorial perception, because of their molecular composition and fibrous structure. Current understanding in the science of food structuring has enabled the utilization of alternative or nonmeat protein ingredients to create novel structured matrices that could resemble the textural functionality of real meat. The physicochemical and structural changes that occur in concentrated protein systems during thermomechanical processing lead to the creation of a fibrous or layered meat-like texture. Phase transitions in concentrated protein systems during protein-protein, protein-polysaccharide, protein-lipid, and protein-water interactions significantly influence the texture and the overall sensory quality of meat analogs. This review summarizes the roles of raw materials (moisture, protein type and concentration, lipids, polysaccharides, and air) and processing parameters (temperature, pH, and shear) in modulating the behavior of the protein phase during the restructuring process (structure-function-process relationship). The big challenge for the food industry is to manufacture concept-based (such as beef-like, chicken-like, etc.) meat analogs with controlled structural attributes. This information will be useful in developing superior meat analogs that fulfill consumer expectations when replacing meat in their diet.


Asunto(s)
Productos de la Carne , Carne , Animales , Bovinos , Pollos , Dieta , Carne/análisis , Productos de la Carne/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA