Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Theor Appl Genet ; 126(12): 2969-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24042571

RESUMEN

KEY MESSAGE: The Ror1 gene was fine-mapped to the pericentric region of barley chromosome 1HL. Recessively inherited loss-of-function alleles of the barley (Hordeum vulgare) Mildew resistance locus o (Mlo) gene confer durable broad-spectrum disease resistance against the obligate biotrophic fungal powdery mildew pathogen Blumeria graminis f.sp. hordei. Previous genetic analyses revealed two barley genes, Ror1 and Ror2, that are Required for mlo-specified resistance and basal defence. While Ror2 was cloned and shown to encode a t-SNARE protein (syntaxin), the molecular nature or Ror1 remained elusive. Ror1 was previously mapped to the centromeric region of the long arm of barley chromosome 1H. Here, we narrowed the barley Ror1 interval to 0.18 cM and initiated a chromosome walk using barley yeast artificial chromosome (YAC) clones, next-generation DNA sequencing and fluorescence in situ hybridization. Two non-overlapping YAC contigs containing Ror1 flanking genes were identified. Despite a high degree of synteny observed between barley and the sequenced genomes of the grasses rice (Oryza sativa), Brachypodium distachyon and Sorghum bicolor across the wider chromosomal area, the genes in the YAC contigs showed extensive interspecific rearrangements in orientation and order. Consequently, the position of a Ror1 homolog in these species could not be precisely predicted, nor was a barley gene co-segregating with Ror1 identified. These factors have prevented the molecular identification of the Ror1 gene for the time being.


Asunto(s)
Mapeo Cromosómico , Paseo de Cromosoma , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Hordeum/genética , Brachypodium/fisiología , Hibridación Fluorescente in Situ
2.
Phytochemistry ; 68(1): 41-51, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17083951

RESUMEN

The function of the ectomycorrhizal mutualism depends on the ability of the fungal symbionts to take up nutrients (particularly nitrogen) available in inorganic and/or organic form in the soil and to translocate them (or their metabolites) to the symbiotic roots. A better understanding of the molecular mechanisms underlying nutrient exchanges between fungus and plant at the symbiotic interface is necessary to fully understand the function of the mycorrhizal symbioses. The present review reports the characterization of several genes putatively involved in nitrogen uptake and transfer in the Hebeloma cylindrosporum-Pinus pinaster ectomycorrhizal association. Study of this model system will further clarify the symbiotic nutrient exchange which plays a major role in plant nutrition as well as in resistance of plants against pathogens, heavy metals, drought stress, etc. Ultimately, ecological balance is maintained and/or improved with the help of symbiotic associations, and therefore, warrant further understanding.


Asunto(s)
Micorrizas/metabolismo , Nitrógeno/metabolismo , Pinus/metabolismo , Transporte Biológico Activo , Modelos Biológicos , Micorrizas/genética , Pinus/microbiología
3.
FEBS Lett ; 528(1-3): 119-24, 2002 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-12297290

RESUMEN

Besides a role in phosphate supply, ectomycorrhizas play a crucial role in nitrogen nutrition of plants. The ectomycorrhizal association between Hebeloma cylindrosporum and Pinus pinaster serves as a model system accessible to molecular manipulation. Hebeloma mycelium is able to take up and use amino acids as the sole nitrogen source. Suppression cloning allowed identification of a Hebeloma transporter (HcGAP1) mediating histidine uptake. HcGAP1 mediates secondary active uptake of a wide spectrum of different amino acids. The secondary active transport mechanism together with the expression in hyphae, but not in mycorrhizas, indicate a role in uptake of organic nitrogen from the soil.


Asunto(s)
Agaricales/enzimología , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Agaricales/genética , Agaricales/crecimiento & desarrollo , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Transporte Biológico Activo , Clonación Molecular , Genes Fúngicos , Modelos Moleculares , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Filogenia , Simbiosis , Árboles/metabolismo , Árboles/microbiología
4.
Science ; 330(6010): 1543-6, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148392

RESUMEN

Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.


Asunto(s)
Ascomicetos/genética , Eliminación de Gen , Genes Fúngicos , Genoma Fúngico , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Adaptación Fisiológica , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Metabolismo de los Hidratos de Carbono , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Enzimas/genética , Enzimas/metabolismo , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/genética , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Retroelementos , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
Mycorrhiza ; 16(6): 437-442, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16912848

RESUMEN

Hebeloma cylindrosporum is a model fungus for mycorrhizal studies because of its fast growth rate, simple nutritional requirements, and completion of its life cycle in vitro, and because it is amenable to transformation. To advance cell biological research during establishment of symbiosis, a tool that would enable the direct visualisation of fusion proteins in the different symbiotic tissues [namely, the expression of reporter genes such as Green Fluorescent Protein (GFP)] was still a missing tool. In the present study, H. cylindrosporum was transformed using Agrobacterium carrying the binary plasmid pBGgHg containing the Escherichia coli hygromycin B phosphotransferase (hph) and the EGFP genes, both under the control of the Agaricus bisporus glyceraldehyde-3-phosphate dehydrogenase promoter. EGFP expression was successfully detected in transformants. The fluorescence was uniformly distributed in the hyphae, while no significant background signal was detected in control hyphae. The suitability of EGFP for reporter gene studies in Hebeloma cylindrosporum was demonstrated opening up new perspectives in the Hebeloma genetics.


Asunto(s)
Agrobacterium tumefaciens/genética , Basidiomycota/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Agrobacterium tumefaciens/metabolismo , Basidiomycota/genética , Southern Blotting , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Micorrizas/genética , Micorrizas/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transformación Genética
6.
New Phytol ; 170(2): 401-10, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16608464

RESUMEN

Constraints on plant growth imposed by low availability of nitrogen are a characteristic feature of ecosystems dominated by ectomycorrhizal plants. Ectomycorrhizal fungi play a key role in the N nutrition of plants, allowing their host plants to access decomposition products of dead plant and animal materials. Ectomycorrhizal plants are thus able to compensate for the low availability of inorganic N in forest ecosystems. The capacity to take up peptides, as well as the transport mechanisms involved, were analysed in the ectomycorrhizal fungus Hebeloma cylindrosporum. The present study demonstrated that H. cylindrosporum mycelium was able to take up di- and tripeptides and use them as sole N source. Two peptide transporters (HcPTR2A and B) were isolated by yeast functional complementation using an H. cylindrosporum cDNA library, and were shown to mediate dipeptide uptake. Uptake capacities and expression regulation of both genes were analysed, indicating that HcPTR2A was involved in the high-efficiency peptide uptake under conditions of limited N availability, whereas HcPTR2B was expressed constitutively.


Asunto(s)
Agaricales/metabolismo , Dipéptidos/metabolismo , Proteínas Fúngicas/fisiología , Proteínas de Transporte de Membrana/fisiología , Micorrizas/metabolismo , Oligopéptidos/metabolismo , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Biblioteca de Genes , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Nitrógeno/metabolismo , Filogenia , Análisis de Secuencia de Proteína , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA