Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 21(8): 892-901, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32601470

RESUMEN

Autoreactive T cells are eliminated in the thymus to prevent autoimmunity by promiscuous expression of tissue-restricted self-antigens in medullary thymic epithelial cells. This expression is dependent on the transcription factor Fezf2, as well as the transcriptional regulator Aire, but the entire picture of the transcriptional program has been obscure. Here, we found that the chromatin remodeler Chd4, also called Mi-2ß, plays a key role in the self-antigen expression in medullary thymic epithelial cells. To maximize the diversity of self-antigen expression, Fezf2 and Aire utilized completely distinct transcriptional mechanisms, both of which were under the control of Chd4. Chd4 organized the promoter regions of Fezf2-dependent genes, while contributing to the Aire-mediated induction of self-antigens via super-enhancers. Mice deficient in Chd4 specifically in thymic epithelial cells exhibited autoimmune phenotypes, including T cell infiltration. Thus, Chd4 plays a critical role in integrating Fezf2- and Aire-mediated gene induction to establish central immune tolerance.


Asunto(s)
Autoantígenos/inmunología , Tolerancia Central/fisiología , Regulación de la Expresión Génica/inmunología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/inmunología , Animales , Autoantígenos/biosíntesis , ADN Helicasas/inmunología , ADN Helicasas/metabolismo , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteína AIRE
2.
Inflamm Regen ; 42(1): 28, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36056452

RESUMEN

T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell selection for the prevention of autoimmunity and the establishment of immune surveillance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA