Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Neurosci ; 48(5): 2182-2198, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30070747

RESUMEN

Thinners are organic solvents widely used in industrial applications, but they have also been subject to abuse by inhalation for their psychoactive and rewarding properties. In spite of the prevalence of inhalant abuse, the addictive potential and pathways mediating their reinforcing effects are not yet fully understood and thus still subject of further investigations. Here, we assessed in mice the locomotor activity and the ability of paint thinner to reinforce the conditioning in the place preference paradigm following acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposures to 300 and 600 ppm of thinner vapor. While locomotor activity was unaffected by the different thinner treatments, a positive conditioned place preference to inhaled thinner was found upon subchronic and chronic exposures. To investigate the activated brain structures underlying such behavioural changes, we analyzed the distribution of c-Fos immunoreactivity, a marker for neuronal activation, following acute and repeated exposures to 600 ppm of thinner. Notably, thinner exposure increased the number of c-Fos immunoreactive neurons with increasing duration of exposure in the majority of structures examined; including those typically involved in the processing of rewarding or emotionally stimuli (e.g., ventral tegmental area, core and shell of nucleus accumbens, amygdala, bed nucleus of the stria terminalis, and cingulate cortex), and olfactory stimuli (e.g., piriform cortex and olfactory tubercle). Moreover, prolonged, but not acute thinner inhalation significantly increased c-Fos immunoreactivity in all hippocampal subregions. Taken together, the expanded distribution of thinner-induced c-Fos expression may underlie the observed positive reinforcement upon long-term thinner inhalation.


Asunto(s)
Conducta Animal/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Refuerzo en Psicología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Condicionamiento Clásico , Inmunohistoquímica/métodos , Masculino , Ratones , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Recompensa
2.
FASEB J ; 30(11): 3690-3701, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27440795

RESUMEN

The circadian clock is thought to adjust retinal sensitivity to ambient light levels, yet the involvement of specific clock genes is poorly understood. We explored the potential role of the nuclear receptor subfamily 1, group D, member 1 (REV-ERBα; or NR1D1) in this respect. In light-evoked behavioral tests, compared with wild-type littermates, Rev-Erbα-/- mice showed enhanced negative masking at low light levels (0.1 lx). Rev-Erbα-/- mouse retinas displayed significantly higher numbers of intrinsically photosensitive retinal ganglion cells (ipRGCs; 62% more compared with wild-type) and more intense melanopsin immunostaining of individual ipRGCs. In agreement with a pivotal role for melanopsin, negative masking at low light intensities was abolished in Rev-Erbα-/- Opn4-/- (melanopsin gene) double-null mice. Rev-Erbα-/- mice showed shortened latencies of both a and b electroretinogram waves, modified scotopic and photopic b-wave and scotopic threshold responses, and increased pupillary constriction, all of which suggested increased light sensitivity. However, wild-type and Rev-Erbα-/- mice displayed no detectable differences by in vivo fundus imaging, retinal histology, or expression of cell type-specific markers for major retinal cell populations. We conclude that REV-ERBα plays a major role in retinal information processing, and we speculate that REV-ERBα and melanopsin set sensitivity levels of the rod-mediated ipRGC pathway to coordinate activity with ambient light.-Ait-Hmyed Hakkari, O., Acar, N., Savier, E., Spinnhirny, P., Bennis, M., Felder-Schmittbuhl, M.-P., Mendoza, J., Hicks, D. Rev-Erbα modulates retinal visual processing and behavioral responses to light.


Asunto(s)
Conducta Animal/fisiología , Luz , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Retina/fisiología , Opsinas de Bastones/metabolismo , Animales , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Estimulación Luminosa/métodos , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética
3.
Eur J Neurosci ; 37(7): 1048-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23351077

RESUMEN

Many aspects of retinal physiology are modulated by circadian clocks, but it is unclear whether clock malfunction impinges directly on photoreceptor survival, differentiation or function. Eyes from wild-type (WT) and Period1 (Per1) and Period2 (Per2) mutant mice (Per1(Brdm1) Per2(Brdm1) ) were examined for structural (histology, in vivo imaging), phenotypical (RNA expression, immunohistochemistry) and functional characteristics. Transcriptional levels of selected cone genes [red/green opsin (Opn1mw), blue cone opsin (Opn1sw) and cone arrestin (Arr3)] and one circadian clock gene (RORb) were quantified by real-time polymerase chain reaction. Although there were no changes in general retinal histology or visual responses (electroretinograms) between WT and Per1(Brdm1) Per2(Brdm1) mice, compared with age-matched controls, Per1(Brdm1) Per2(Brdm1) mice showed scattered retinal deformations by fundus inspection. Also, mRNA expression levels and immunostaining of blue cone opsin were significantly reduced in mutant mice. Especially, there was an alteration in the dorsal-ventral patterning of blue cones. Decreased blue cone opsin immunoreactivity was present by early postnatal stages, and remained throughout maturation. General photoreceptor differentiation was retarded in young mutant mice. In conclusion, deletion of both Per1 and Per2 clock genes leads to multiple discrete changes in retina, notably patchy tissue disorganization, reductions in cone opsin mRNA and protein levels, and altered distribution. These data represent the first direct link between Per1 and Per2 clock genes, and cone photoreceptor differentiation and function.


Asunto(s)
Proteínas Circadianas Period/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Opsinas de Bastones/metabolismo , Animales , Arrestinas/genética , Arrestinas/metabolismo , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/citología , Opsinas de Bastones/genética , Transcripción Genética
4.
Behav Brain Res ; 417: 113597, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34563601

RESUMEN

Volatile solvents exposure can result in various behavioral impairments that have been partly associated to altered adult hippocampal neurogenesis. Despite recent evidence supporting this association, few studies have been devoted to examine the impact on olfactory functioning and olfactory bulb (OB) neurogenesis, although olfactory system is directly in contact with volatile molecules. Thus, this study was designed to evaluate in adult mice the potential modifications of the olfactory functioning after acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposure to thinner vapor at both behavioral and cellular levels. Firstly, behavioral evaluations showed that chronic thinner exposure impacts on odor detection ability of treated mice but does not affect mice ability to efficiently discriminate between two different odors. Moreover, chronic thinner exposure produces impairment in the olfactory-mediated associative memory. Secondly, analysis of the effects of thinner exposure in the subventricular zone (SVZ) of the lateral ventricle and in the OB revealed that thinner treatments do not induce apoptosis nor glial activation. Thirdly, immunohistochemical quantification of different markers of adult olfactory neurogenesis showed that inhalant treatments do not change the number of proliferating progenitors in the SVZ and the rostral migratory stream (RMS), as well as the number of newborn cells reaching and integrating in the OB circuitry. Altogether, our data highlight that the impaired olfactory performances in chronically-exposed mice are not associated to an alteration of adult neurogenesis in the SVZ-OB system.


Asunto(s)
Abuso de Inhalantes/fisiopatología , Neurogénesis/efectos de los fármacos , Trastornos del Olfato/fisiopatología , Bulbo Olfatorio/efectos de los fármacos , Compuestos Orgánicos Volátiles/toxicidad , Animales , Ventrículos Laterales/efectos de los fármacos , Ratones , Olfato/efectos de los fármacos
5.
Front Neurosci ; 12: 35, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472835

RESUMEN

Thinners are highly toxic chemicals widely employed as organic solvents in industrial and domestic use. They have psychoactive properties when inhaled, and their chronic abuse as inhalants is associated with severe long-term health effects, including brain damage and cognitive-behavioral alterations. Yet, the sites and mechanisms of action of these compounds on the brain are far from being fully understood. Here, we investigated the consequences of paint thinner inhalation in adult male mice. Depression-like behaviors and an anxiolytic effect were found following repeated exposure in chronic treatments lasting 12 weeks. Both subchronic (6 weeks) and chronic treatments impaired learning and memory functions, while no changes were observed after acute treatment. To investigate possible molecular/structural alterations underlying such behavioral changes, we focused on the hippocampus. Notably, prolonged, but not acute thinner inhalation strongly affected adult neurogenesis in the dentate gyrus (DG), reducing progenitor cell proliferation after chronic treatments and impairing the survival of newborn neurons following both chronic and subchronic treatments. Furthermore, a down-regulation in the expression of BDNF and NMDA receptor subunits as well as a reduction in CREB expression/phosphorylation were found in the hippocampi of chronically treated mice. Our findings demonstrate for the first time significant structural and molecular changes in the adult hippocampus after prolonged paint thinner inhalation, indicating reduced hippocampal neuroplasticity and strongly supporting its implication in the behavioral dysfunctions associated to inhalant abuse.

6.
Front Behav Neurosci ; 11: 171, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959195

RESUMEN

Occupational exposure and sniffing of volatile organic solvents continue to be a worldwide health problem, raising the risk for teratogenic sequelae of maternal inhalant abuse. Real life exposures usually involve simultaneous exposures to multiple solvents, and almost all the abused solvents contain a mixture of two or more different volatile compounds. However, several studies examined the teratogenicity due to industrial exposure to a single volatile solvent but investigating the teratogenic potential of complex chemical mixture such as thinner remains unexplored. This study was undertaken to evaluate developmental neurotoxicity of paint thinner using a mouse model. Mated female mice (N = 21) were, therefore, exposed to repeated and brief inhalation episodes of 0, 300 or 600 ppm of thinner during the entire period of pregnancy. Females weigh was recorded and their standard fertility and reproductive parameters were assessed. After birth postnatal day 1 (PND1), offspring (N = 88) length and body weight were measured in a daily basis. At PND5, the pups were assessed for their postnatal growth, physical maturation, reflex development, neuromotor abilities, sensory function, activity level, anxiety, depression, learning and memory functions. At adulthood, structural changes of the hippocampus were examined by estimating the total volume of the dentate gyrus. Except one case of thinner induced abortion at the higher dose, our results showed that the prenatal exposure to the solvent did not cause any maternal toxicity or decrease in the viability of the offspring. Therefore, a lower birth weight, decrease in the litter size and delayed reflexes ontogeny were registered in prenatally exposed offspring to both 300 ppm and 600 ppm of thinner. In addition, prenatally exposure to thinner resulted in increased anxiolytic- and depression-like behaviors. In contrast, impaired learning and memory functions and decreased hippocampal dentate gyrus volume were revealed only in the prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.

7.
Front Pharmacol ; 8: 598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928658

RESUMEN

Anacyclus pyrethrum (L.) is a plant widely used in Moroccan traditional medicine to treat inflammatory and painful diseases. The objective of the present study was to evaluate the antinociceptive, anti-inflammatory and antioxidant activities of aqueous and methanol extracts of Anacyclus pyrethrum roots (AEAPR and MEAPR). The anti-inflammatory effect of AEAPR and MEAPR was determined in xylene-induced ear edema and Complete Freund's Adjuvant (CFA)-induced paw edema. The antinociceptive activity of AEAPR and MEAPR (125, 250, and 500 mg/kg) administered by gavage was examined in mice by using acetic acid-induced writhing, hot plate, and formalin tests, and the mechanical allodynia were assessed in CFA-induced paw edema. In addition, the in vitro antioxidant activities of the extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method, ferric reducing power and ß-carotene-linoleic acid assay systems. AEAPR and MEAPR produced significant reductions in CFA-induced paw edema and xylene-induced ear edema. A single oral administration of these extracts at 250 and 500 mg/kg significantly reduced mechanical hypersensitivity induced by CFA, which had begun 1 h 30 after the treatment, and was maintained till 7 h. Chronic treatment with both extracts significantly reduced mechanical hypersensitivity in persistent pain conditions induced by CFA. Acute pretreatment with AEAPR or MEAPR at high dose caused a significant decrease in the number of abdominal writhes induced by acetic acid injection (52.2 and 56.7%, respectively), a marked increase of the paw withdrawal latency in the hot plate test, and also a significant inhibition of both phases of the formalin test. This antinociceptive effect was partially reversed by naloxone pretreatment in the hot plate and formalin tests. Additionally, a significant scavenging activity in DPPH, reducing power and protection capacity of ß-carotene was observed in testing antioxidant assays. The present study suggests that AEAPR and MEAPR possess potent anti-inflammatory, antinociceptive and antioxidant effects which could be related to the presence of alkaloids and phenols in the plant. In addition, the antinociceptive effect of APR extracts seems to partly involve the opioid system. Taken together, these results suggest that Anacylcus pyrethrum may indeed be useful in the treatment of pain and inflammatory disorders in humans.

8.
Geroscience ; 39(1): 51-59, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28299640

RESUMEN

Growth hormone receptor knockout mice (GHRKO) are characterized by high insulin sensitivity and extended lifespan. Interestingly, the secretory activity of visceral fat in GHRKO mice is altered, stimulating whole body insulin sensitivity. In this study, we transplanted normal (N) mice with visceral fat pads from GHRKO or N mice to determine the role of visceral fat on the insulin signaling. We found that the transplant of visceral fat from GHRKO mice to N mice (N-GHRKO) improved whole body insulin sensitivity when comparing with sham-operated mice (N-S) and with mice that received visceral fat from N mice (N-N). This was associated with increased hepatic insulin sensitivity as observed by the increased phosphorylated insulin receptor and increased hepatic expression of Pparα and Pparγ. In conclusion, we demonstrated that visceral fat transplant from GHRKO mice into normal mice enhanced insulin sensitivity and glucose tolerance. These results further confirm the differential physiological role played by visceral adipose tissue from GH receptor deficient mice, indicating that the increase of this fat depot can be associated with beneficial effects on insulin signaling and longevity.


Asunto(s)
Resistencia a la Insulina/genética , Insulina/metabolismo , Grasa Intraabdominal/trasplante , ARN/genética , Receptores de Somatotropina/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Hormona del Crecimiento/metabolismo , Longevidad , Masculino , Ratones , Ratones Noqueados , Fosforilación , Distribución Aleatoria , Transducción de Señal
9.
Environ Toxicol Pharmacol ; 48: 53-62, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27764701

RESUMEN

In the present work, we investigated developmental toxicity of Paraquat (PQ), from the 1st or 6th day of mating and throughout the gestation period. We have examined several parameters, including toxicity indices, reproductive performance, sensorimotor development, as well as anxiety and cognitive performance of the offspring. Our results showed that exposure to 20mg/kg of Paraquat during the first days of pregnancy completely prevents pregnancy in treated mice, but from the 6th day of pregnancy, an alteration in fertility and reproductive parameters was observed. In offspring, the PQ was responsible for an overall delay of innate reflexes and a deficit in motor development. All exposed animals showed a decrease in the level of locomotor activity, increased levels of anxiety-like behavior and pronounced cognitive impairment in adulthood. These results demonstrated that Paraquat led to the onset of many behavioral changes that stem from the impairment of neuronal developmental processes in prenatally exposed mice.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Herbicidas/toxicidad , Síndromes de Neurotoxicidad/etiología , Paraquat/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/patología , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Síndromes de Neurotoxicidad/embriología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Reflejo de Enderezamiento/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante
10.
Folia Histochem Cytobiol ; 51(1): 45-54, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23690217

RESUMEN

The distribution of galanin immunoreactive perikarya and nerve fibers in the brain of the desert lizard U. acanthinura was studied by means of immunofluorescence using an antiserum against rabbit galanin. The animals were captured during the activity season in March (wet season) just before reproduction period and in June (arid season) after ovulation period. Immunoreactive neurons were mostly detected in the mediobasal and the infundibular recess nuclei, the nucleus of the paraventricular organ, the paraventricular organ, the periventricular nucleus and in the anterior hypothalamus at the level of the periventricular nucleus, the paraventricular nucleus and the supraoptic nucleus. The differences in brain galanin expression between animals collected under both sets of environmental conditions indicated changes which occur during the annual and reproductive cycles. The wide hypothalamic and extrahypothalamic distribution of galanin immunoreactive fibers suggests that this peptide may have hypophysiotropic, neuromodulator and neurotransmitter roles in the lizard U. acanthinura.


Asunto(s)
Encéfalo/metabolismo , Clima Desértico , Galanina/metabolismo , Lagartos/metabolismo , Estaciones del Año , Secuencia de Aminoácidos , Animales , Peso Corporal , Recuento de Células , Tamaño de la Célula , Femenino , Galanina/química , Masculino , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Vitelogénesis
11.
Eur J Neurosci ; 24(12): 3401-14, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17229090

RESUMEN

Transmembrane isoforms of adenylate cyclases (AC) integrate a wide variety of extracellular signals from neurotransmitters to morphogens and can also regulate cAMP production in response to calcium entry. Based on observations in the barrelless mouse strain, the Adcy1 gene (AC1) was involved in the segregation of binocular retinal inputs. To determine the potential role of other AC isoforms we localized the Adcy genes in the visual centres during development, using in situ hybridization. Six different AC subtypes were found in the developing retinal ganglion cell layer (RGC; AC1, AC2, AC3, AC5, AC8, and AC9), and three AC subtypes were expressed in the central brain targets, the dorsal lateral geniculate nucleus (AC1 and AC8), the ventral lateral geniculate nucleus (AC2 and AC8) and the superior colliculus (AC1, AC2, AC8). Using a genetic approach we tested the role of the calcium modulated cyclases AC1, AC5 and AC8 for the segregation retinal fibres. Ipsilateral retinal axons remained exuberant in the AC1(-/-) mice, with overlapping retinal projections from both eyes in the superior colliculus and the visual thalamus. These abnormalities were similar to those of barrelless mouse mutants. No abnormalities were detectable in the AC5(-/-) or the AC8(-/-) mice. Similar abnormalities were noted in the single AC1(-/-) and the AC1/AC8 double-knockout mice (DKO). Thus, only AC1 is required for the maturation of the retinal axon terminals whereas AC5 and AC8 are not needed. The specificity of AC1's action is linked to its cellular localization in the RGCs and to its distinctive functional profile, compared with the other cyclases expressed in the same cells.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Retina/metabolismo , Vías Visuales , Adenilil Ciclasas/clasificación , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Animales , Animales Recién Nacidos , Toxina del Cólera/metabolismo , Embrión de Mamíferos , Lateralidad Funcional , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ/métodos , Ratones , Ratones Noqueados , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retina/embriología , Retina/crecimiento & desarrollo , Vías Visuales/embriología , Vías Visuales/enzimología , Vías Visuales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA