Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(8): e1011328, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549173

RESUMEN

The Coronavirus envelope (E) protein is a small structural protein with ion channel activity that plays an important role in virus assembly, budding, immunopathogenesis and disease severity. The viroporin E is also located in Golgi and ER membranes of infected cells and is associated with inflammasome activation and immune dysregulation. Here we evaluated in vitro antiviral activity, mechanism of action and in vivo efficacy of BIT225 for the treatment of SARS-CoV-2 infection. BIT225 showed broad-spectrum direct-acting antiviral activity against SARS-CoV-2 in Calu3 and Vero cells with similar potency across 6 different virus strains. BIT225 inhibited ion channel activity of E protein but did not inhibit endogenous currents or calcium-induced ion channel activity of TMEM16A in Xenopus oocytes. BIT225 administered by oral gavage for 12 days starting 12 hours before infection completely prevented body weight loss and mortality in SARS-CoV-2 infected K18 mice (100% survival, n = 12), while all vehicle-dosed animals reached a mortality endpoint by Day 9 across two studies (n = 12). When treatment started at 24 hours after infection, body weight loss, and mortality were also prevented (100% survival, n = 5), while 4 of 5 mice maintained and increased body weight and survived when treatment started 48 hours after infection. Treatment efficacy was dependent on BIT225 dose and was associated with significant reductions in lung viral load (3.5 log10), virus titer (4000 pfu/ml) and lung and serum cytokine levels. These results validate viroporin E as a viable antiviral target and support the clinical study of BIT225 for treatment and prophylaxis of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Chlorocebus aethiops , Ratones , Animales , Antivirales/farmacología , Células Vero , SARS-CoV-2 , Ratones Transgénicos , Proteínas Viroporinas , Factores de Transcripción , Gravedad del Paciente , Pérdida de Peso , Canales Iónicos , Modelos Animales de Enfermedad
2.
Br J Clin Pharmacol ; 90(4): 1027-1035, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990600

RESUMEN

AIMS: AP30663 is a novel compound under development for pharmacological conversion of atrial fibrillation by targeting the small conductance Ca2+ activated K+ (KCa2) channel. The aim of this extension phase 1 study was to test AP30663 at higher single doses compared to the first-in-human trial. METHODS: Sixteen healthy male volunteers were randomized into 2 cohorts: 6- and 8-mg/kg intravenous single-dose administration of AP30663 vs. placebo. Safety, pharmacokinetic and pharmacodynamic data were collected. RESULTS: AP30663 was associated with mild and transient infusion site reactions with no clustering of other adverse events but with an estimated maximum mean QTcF interval prolongation of 45.2 ms (95% confidence interval 31.5-58.9) in the 6 mg/kg dose level and 50.4 ms (95% confidence interval 36.7-64.0) with 8 mg/kg. Pharmacokinetics was dose proportional with terminal half-life of around 3 h. CONCLUSION: AP30663 in doses up to 8 mg/kg was associated with mild and transient infusion site reactions and an increase of the QTcF interval. Supporting Information support that the QTc effect may be explained by an off-target inhibition of the IKr channel.


Asunto(s)
Fibrilación Atrial , Humanos , Masculino , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Electrocardiografía , Frecuencia Cardíaca , Reacción en el Punto de Inyección
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835078

RESUMEN

Adenosine, an endogenous nucleoside, plays a critical role in maintaining homeostasis during stressful situations, such as energy deprivation or cellular damage. Therefore, extracellular adenosine is generated locally in tissues under conditions such as hypoxia, ischemia, or inflammation. In fact, plasma levels of adenosine in patients with atrial fibrillation (AF) are elevated, which also correlates with an increased density of adenosine A2A receptors (A2ARs) both in the right atrium and in peripheral blood mononuclear cells (PBMCs). The complexity of adenosine-mediated effects in health and disease requires simple and reproducible experimental models of AF. Here, we generate two AF models, namely the cardiomyocyte cell line HL-1 submitted to Anemonia toxin II (ATX-II) and a large animal model of AF, the right atrium tachypaced pig (A-TP). We evaluated the density of endogenous A2AR in those AF models. Treatment of HL-1 cells with ATX-II reduced cell viability, while the density of A2AR increased significantly, as previously observed in cardiomyocytes with AF. Next, we generated the animal model of AF based on tachypacing pigs. In particular, the density of the key calcium regulatory protein calsequestrin-2 was reduced in A-TP animals, which is consistent with the atrial remodelling shown in humans suffering from AF. Likewise, the density of A2AR in the atrium of the AF pig model increased significantly, as also shown in the biopsies of the right atrium of subjects with AF. Overall, our findings revealed that these two experimental models of AF mimicked the alterations in A2AR density observed in patients with AF, making them attractive models for studying the adenosinergic system in AF.


Asunto(s)
Fibrilación Atrial , Receptor de Adenosina A2A , Animales , Humanos , Adenosina/metabolismo , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Leucocitos Mononucleares/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Adenosina A2A/metabolismo , Porcinos
4.
Europace ; 23(11): 1847-1859, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34080619

RESUMEN

AIMS: Pharmacological termination of atrial fibrillation (AF) remains a challenge due to limited efficacy and potential ventricular proarrhythmic effects of antiarrhythmic drugs. SK channels are proposed as atrial-specific targets in the treatment of AF. Here, we investigated the effects of the new SK channel inhibitor AP14145. METHODS AND RESULTS: Eight goats were implanted with pericardial electrodes for induction of AF (30 days). In an open-chest study, the atrial conduction velocity (CV) and effective refractory period (ERP) were measured during pacing. High-density mapping of both atrial free-walls was performed during AF and conduction properties were assessed. All measurements were performed at baseline and during AP14145 infusion [10 mg/kg/h (n = 1) or 20 mg/kg/h (n = 6)]. At an infusion rate of 20 mg/kg/h, AF terminated in five of six goats. AP14145 profoundly increased ERP and reduced CV during pacing. AP14145 increased spatiotemporal instability of conduction at short pacing cycle lengths. Atrial fibrillation cycle length and pathlength (AF cycle length × CV) underwent a strong dose-dependent prolongation. Conduction velocity during AF remained unchanged and conduction patterns remained complex until the last seconds before AF termination, during which a sudden and profound organization of fibrillatory conduction occurred. CONCLUSION: AP14145 provided a successful therapy for termination of persistent AF in goats. During AF, AP14145 caused an ERP and AF cycle length prolongation. AP14145 slowed CV during fast pacing but did not lead to a further decrease during AF. Termination of AF was preceded by an abrupt organization of AF with a decline in the number of fibrillation waves.


Asunto(s)
Fibrilación Atrial , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Atrios Cardíacos , Humanos
5.
J Mol Cell Cardiol ; 143: 63-70, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32325152

RESUMEN

Our heart is comprised of many different cell types that all contribute to cardiac function. An important step in deciphering the molecular complexity of our heart is to decipher the molecular composition of the various cardiac cell types. Here we set out to delineate a comprehensive protein expression profile of the two most prevalent cell types in the heart: cardiomyocytes and cardiac fibroblasts. To this end, we isolated cardiomyocytes and fibroblasts from rat hearts and combined state-of-the-art flow cytometry with high-resolution mass spectrometry to investigate their proteome profiles right after isolation. We measured and quantified 5240 proteins in cardiomyocytes and 6328 proteins in cardiac fibroblasts. In addition to providing a global protein profile for these cardiac cell types, we also present specific findings, such as unique expression of ion channels and transcription factors for each cell type. For instance, we show that the sodium channel Scn7a and the cation channel Trpm7 are expressed in fibroblasts but not in cardiomyocytes, which underscores the importance of investigating the endogenous cell host prior to functional studies. Our dataset represents a valuable resource on protein expression profiles in these two primary cardiac cells types.


Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma , Proteómica , Animales , Biomarcadores , Células Cultivadas , Cromatografía Liquida , Perfilación de la Expresión Génica , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem , Transcriptoma
6.
Pacing Clin Electrophysiol ; 41(6): 620-626, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29572929

RESUMEN

BACKGROUND: Dysfunction of NaV 1.5 encoded by SCN5A accounts for approximately half of the channelopathic SIDS cases. We investigated the functional effect of two gene variants identified in the same patient, one in SCN5A and one in SCN1Bb. The aim of the study was to risk stratify the proband's family. METHODS: The family was referred for cardiovascular genetic evaluation to assess familial risk of cardiac disease. Functional analysis of the identified variants was performed with patch-clamp electrophysiology in HEK293 cells. RESULTS: A 16-month-old healthy boy died suddenly in the context of nonspecific illness and possible fever. Postmortem genetic testing revealed variants in the SCN5A and SCN1Bb genes. The proband's father carries the same variants but is asymptomatic. Electrophysiological analysis of the NaV 1.5_1281X truncation revealed complete loss-of-function of the channel. Coexpression of NaV 1.5 with NaV ß1b significantly increased INa density when compared to NaV 1.5 alone. The NaV ß1b _V268I variant abolished this INa density increase. Moreover, it shifted the activation curve toward more depolarized potentials. CONCLUSIONS: Genetic variation of both sodium channel and its modifiers may contribute to sudden unexplained death in childhood. However, the asymptomatic father suggests that genetic variation of these genes is not sufficient to cause sudden death or clinically detectable SCN5A phenotypes.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/genética , Muerte Súbita del Lactante/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Variación Genética , Humanos , Lactante , Masculino , Linaje
7.
Proc Natl Acad Sci U S A ; 112(18): 5714-9, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25901329

RESUMEN

Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the ß-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pKa value, to preserve their negative charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act antiarrhythmically in embryonic rat cardiomyocytes and in isolated perfused hearts from guinea pig.


Asunto(s)
Antiarrítmicos/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Ácidos Grasos Insaturados/metabolismo , Canal de Potasio KCNQ1/química , Mutación , Animales , Conductividad Eléctrica , Femenino , Cobayas , Corazón/efectos de los fármacos , Humanos , Canal de Potasio KCNQ1/genética , Microscopía Electrónica de Rastreo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Oocitos/metabolismo , Perfusión , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Electricidad Estática , Xenopus laevis
8.
J Cardiovasc Pharmacol ; 66(2): 165-76, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25856531

RESUMEN

INTRODUCTION: SK channels have functional importance in the cardiac atrium of many species, including humans. Pharmacological blockage of SK channels has been reported to be antiarrhythmic in animal models of atrial fibrillation; however, the exact antiarrhythmic mechanism of SK channel inhibition remains unclear. OBJECTIVES: We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability, thereby prolonging the effective refractory period and slowing the conduction velocity (CV). We therefore aimed at elucidating these properties of SK channel inhibition and the underlying antiarrhythmic mechanisms using microelectrode action potential (AP) recordings and CV measurements in isolated rat atrium. Automated patch clamping and two-electrode voltage clamp were used to access INa and IK,ACh, respectively. RESULTS: The SK channel inhibitor N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) exhibited antiarrhythmic effects. ICA prevented electrically induced runs of atrial fibrillation in the isolated right atrium and induced atrial postrepolarization refractoriness and depolarized RMP. Moreover, ICA (1-10 µM) was found to slow CV; however, because of a marked prolongation of effective refractory period, the calculated wavelength was increased. Furthermore, at increased pacing frequencies, SK channel inhibition by ICA (10-30 µM) demonstrated prominent depression of other sodium channel-dependent parameters. ICA did not inhibit IK,ACh, but at concentrations above 10 µM, ICA use dependently inhibited INa. CONCLUSIONS: SK channel inhibition modulates multiple parameters of AP. It prolongs the AP duration and shifts the RMP towards more depolarized potentials through direct ISK block. This indirectly leads to sodium channel inhibition through accumulation of state dependently inactivated channels, which ultimately slows conduction and decreases excitability. However, a contribution from a direct sodium channel inhibition cannot be ruled. We here propose that the primary antiarrhythmic mechanism of SK channel inhibition is through direct potassium channel block and through indirect sodium channel inhibition.


Asunto(s)
Antiarrítmicos/farmacología , Función del Atrio Derecho/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Animales , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/fisiopatología , Función del Atrio Derecho/fisiología , Células CHO , Cricetinae , Cricetulus , Femenino , Atrios Cardíacos/efectos de los fármacos , Masculino , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/uso terapéutico , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Xenopus laevis
9.
Artículo en Inglés | MEDLINE | ID: mdl-21987061

RESUMEN

Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/prevención & control , Fibrilación Atrial/fisiopatología , Bloqueadores de los Canales de Calcio/farmacología , Canales Iónicos/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Potenciales de Acción , Animales , Calcio/metabolismo , Electrofisiología , Corazón/fisiología , Humanos , Iones , Modelos Biológicos , Canales de Potasio/metabolismo
10.
Cardiovasc Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832935

RESUMEN

AIMS: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS: We employed a large animal model, the female landrace pig, and used multiple in-vivo and ex-vivo approaches including pharmacological challenges, electrophysiology and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta or combined alpha-beta blockade), ganglionic blockade (hexamethonium) nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing (snRNAseq) showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION: GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signaling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pace making. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in GLP-1 RA recipients.

11.
EBioMedicine ; 89: 104459, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36796231

RESUMEN

BACKGROUND: Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS. METHODS: We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts. FINDINGS: We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. INTERPRETATION: We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts. FUNDING: ERC (No. 850622), Canadian Institutes of Health Research, Canada Research Chairs and Compute Canada, Swedish National Infrastructure for Computing.


Asunto(s)
Endocannabinoides , Síndrome de QT Prolongado , Animales , Cobayas , Potenciales de Acción , Mutación , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canadá , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo
12.
J Cardiovasc Pharmacol ; 59(2): 142-50, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21992969

RESUMEN

Animal models of pacing-induced heart failure (HF) are often associated with high acute mortality secondary to high pacing frequencies. The present study therefore exploits lower-frequency left ventricular pacing (300 beats per minute) in rabbits for 11 weeks to produce chronic HF with low acute mortality but profound structural, functional, and electrical remodeling and compare with nonpaced controls. Pacing increased heart weight/body weight ratio and decreased left ventricular fractional shortening in tachypaced only. Electrocardiogram recordings during sinus rhythm revealed QTc prolongation in paced animals. Ventricular arrhythmias or sudden death was not observed. Isoproterenol increased heart rate similarly in both groups but showed a blunted QT-shortening effect in tachypaced rabbits compared with controls. Langendorff experiments revealed significant monophasic action potential duration prolongation in tachypaced hearts and reduced contractility at cycle lengths from 400 to 250 ms. Hyperkalemia caused monophasic action potential duration shortening in controls, whereas crossover was seen in tachypaced with monophasic action potential duration prolongation at short cycle length. Hypokalemia prolonged monophasic action potential duration and increased short-term variability of repolarization in tachypaced hearts. A blunted monophasic action potential duration response was observed ex vivo in tachypaced hearts after isoproterenol. The HF rabbits showed structural, functional, and electrical remodeling but very low mortality. Isokalemic and hyperkalemic responses indicate downregulation of functional IKs. Increased short-term variability during hypokalemia unmasks a reduced repolarization reserve.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Estimulación Cardíaca Artificial/efectos adversos , Insuficiencia Cardíaca/fisiopatología , Isoproterenol/farmacología , Potenciales de Acción , Animales , Estimulación Cardíaca Artificial/métodos , Enfermedad Crónica , Modelos Animales de Enfermedad , Regulación hacia Abajo , Electrocardiografía , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/mortalidad , Frecuencia Cardíaca/efectos de los fármacos , Hiperpotasemia/fisiopatología , Hipopotasemia/fisiopatología , Síndrome de QT Prolongado/etiología , Contracción Miocárdica , Canales de Potasio/metabolismo , Conejos
13.
Front Genet ; 13: 806429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154276

RESUMEN

Background: Atrial Fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, responsible for considerable morbidity and mortality. The heterogenic and complex pathogenesis of AF remains poorly understood, which contributes to the current limitation in effective treatments. We aimed to identify rare genetic variants associated with AF in patients with familial AF. Methods and results: We performed whole exome sequencing in a large family with familial AF and identified a rare variant in the gene CACNA1A c.5053G > A which co-segregated with AF. The gene encodes for the protein variants CaV2.1-V1686M, and is important in neuronal function. Functional characterization of the CACNA1A, using patch-clamp recordings on transiently transfected mammalian cells, revealed a modest loss-of-function of CaV2.1-V1686M. Conclusion: We identified a rare loss-of-function variant associated with AF in a gene previously linked with neuronal function. The results allude to a novel link between dysfunction of an ion channel previously associated with neuronal functions and increased risk of developing AF.

14.
Cell Physiol Biochem ; 28(1): 13-24, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21865844

RESUMEN

BACKGROUND: Ischemic postconditioning (PostC), i.e. brief ischemia-reperfusion cycles before full reperfusion, is protective against cardiac ischemia/reperfusion (I/R) injury. Inhibition of the Na(+)/H(+) exchanger NHE1 and delayed intracellular pH-normalization have been proposed to underlie protection by PostC. METHODS AND RESULTS: We used Langendorff perfused rat hearts exposed to 35 min global ischemia to show that 15 min acidic (pH 6.5) treatment at onset of reperfusion decreased infarct size and functional deterioration at least to the same extent as PostC. In contrast, NHE1 inhibition by EIPA was detrimental. To evaluate HL-1 atrial cardiomyocytes as a cellular model for PostC, we exposed the cells to simulated ischemia/reperfusion (I/R) mimicking that in perfused hearts. Necrosis and apoptosis induced by I/R were unaffected by 15 min of pH 6.0 at onset of reperfusion. I/R increased the activity of c-Jun N-terminal Kinase 1/2 (JNK1/2) and Akt, but not of p38 MAPK, with no further effect of acidic reperfusion or EIPA. CONCLUSION: In rat hearts, 15 min acidic reperfusion improves myocardial performance at least as much as does PostC, whereas NHE1 inhibition is detrimental. In contrast, in HL-1 cardiomyocytes, acidic reperfusion or NHE1 inhibition affect neither survival nor JNK1/2-, Akt-, and p38 MAPK activity after I/R, pointing to different mechanisms of damage and protection in these systems.


Asunto(s)
Isquemia Miocárdica/terapia , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Ácidos/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Apoptosis , Células Cultivadas , Concentración de Iones de Hidrógeno , Poscondicionamiento Isquémico , Masculino , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Modelos Biológicos , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Necrosis , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
J Cardiovasc Pharmacol ; 57(2): 223-30, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21135701

RESUMEN

Transgenic rabbits expressing pore mutants of K(V)7.1 display a long QT syndrome 1 (LQT1) phenotype. Recently, NS1643 has been described to increase I(Kr).We hypothesized that NS1643 would shorten the action potential duration (APD(90)) in LQT1 rabbits. Transgenic LQT1 rabbits were compared with littermate control (LMC) rabbits. In vivo electrocardiogram studies in sedated animals were performed at baseline and during 45 minutes of intravenous infusion of NS1643 or vehicle in a crossover design. Ex vivo monophasic action potentials were recorded from Langendorff-perfused hearts at baseline and during 45-minute perfusion with NS1643. Left ventricular refractory periods were assessed before and after NS1643 infusion. Genotype differences in APD accommodation were also addressed. In vivo NS1643 shortened the QTc significantly in LQT1 compared with vehicle. In Langendorff experiments, NS1643 significantly shortened the APD(90) in LQT1 and LMC [32.0 ± 4.3 milliseconds (ms); 21.0 ± 5.0 ms] and left ventricular refractory periods (23.7 ± 8.3; 22.6 ± 9.9 ms). NS1643 significantly decreased dp/dt (LQT1: 49% ± 3%; LMC: 63% ± 4%) and increased the incidence of arrhythmia. The time course of APD adaptation was impaired in LQT1 rabbits and unaffected by I(Kr) augmentation. In conclusion, K(V)11.1 channel activation shortens the cardiac APD in a rabbit model of inherited LQT1, but it comes with the risk of excessive shortening of APD.


Asunto(s)
Animales Modificados Genéticamente/genética , Cresoles/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Compuestos de Fenilurea/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Estudios Cruzados , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/agonistas , Femenino , Conejos , Distribución Aleatoria
16.
Int J Cardiol Heart Vasc ; 37: 100898, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34746364

RESUMEN

BACKGROUND: Atrial dilation is an important risk factor for atrial fibrillation (AF) and animal studies have found that acute atrial dilation shortens the atrial effective refractory period (AERP) and increases the risk of AF. Stretch activated ion channels (SACs) and calcium channels play a role in this. The expression profile and calcium dependent activation makes the small conductance calcium activated K+ channel (KCa2.x) a candidate for coupling stretch induced increases in intracellular calcium through K+-efflux and thereby shortening of atrial refractoriness. OBJECTIVES: We hypothesized that KCa2.x channel inhibitors can prevent the stretch induced shortening of AERP and protect the heart from AF. METHODS: The effect of KCa2 channel inhibitor (N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) 1 µM) was investigated using the isolated perfused rabbit heart preparation. To stretch the left atrium (LA) a balloon was inserted and inflated. AERP and action potential duration (APD) were recorded before and after atrial stretch. AF was induced by burst pacing the LA at different degrees of atrial stretch. RESULTS: Stretching of the LA by increasing the balloon pressure from 0 to 20 mmHg shortened the AERP by 8.6 ± 1 ms. In comparison, the KCa2 inhibitor ICA significantly attenuated the stretch induced shortening of AERP to 2.5 ± 1.1 ms. Total AF duration increased linearly with atrial balloon pressure. This relationship was not found in the presence of ICA. ICA lowered the incidence of AF induction and total AF duration. CONCLUSION: The KCa2 channel inhibitor ICA attenuates the acute stretch induced shortening of AERP and decreases stretch induced vulnerability to AF.

17.
Commun Biol ; 4(1): 1347, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853399

RESUMEN

The dire need for COVID-19 treatments has inspired strategies of repurposing approved drugs. Amantadine has been suggested as a candidate, and cellular as well as clinical studies have indicated beneficial effects of this drug. We demonstrate that amantadine and hexamethylene-amiloride (HMA), but not rimantadine, block the ion channel activity of Protein E from SARS-CoV-2, a conserved viroporin among coronaviruses. These findings agree with their binding to Protein E as evaluated by solution NMR and molecular dynamics simulations. Moreover, we identify two novel viroporins of SARS-CoV-2; ORF7b and ORF10, by showing ion channel activity in a X. laevis oocyte expression system. Notably, amantadine also blocks the ion channel activity of ORF10, thereby providing two ion channel targets in SARS-CoV-2 for amantadine treatment in COVID-19 patients. A screen of known viroporin inhibitors on Protein E, ORF7b, ORF10 and Protein 3a from SARS-CoV-2 revealed inhibition of Protein E and ORF7b by emodin and xanthene, the latter also blocking Protein 3a. This illustrates a general potential of well-known ion channel blockers against SARS-CoV-2 and specifically a dual molecular basis for the promising effects of amantadine in COVID-19 treatment. We therefore propose amantadine as a novel, cheap, readily available and effective way to treat COVID-19.


Asunto(s)
Amantadina/farmacología , Amilorida/análogos & derivados , Antivirales/farmacología , Rimantadina/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/fisiología , Amilorida/farmacología , Canales Iónicos/fisiología
18.
Front Physiol ; 11: 493, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595514

RESUMEN

BACKGROUND: Adenosine leads to atrial action potential (AP) shortening through activation of adenosine 1 receptors (A1-R) and subsequent opening of G-protein-coupled inwardly rectifying K+ channels. Extracellular production of adenosine is drastically increased during stress and ischemia. OBJECTIVE: The aim of this study was to address whether the pharmacological blockade of endogenous production of adenosine and of its signaling prevents atrial fibrillation (AF). METHODS: The role of A1-R activation on atrial action potential duration, refractoriness, and AF vulnerability was investigated in rat isolated beating heart preparations (Langendorff) with an A1-R agonist [2-chloro-N 6-cyclopentyladenosine (CCPA), 50 nM] and antagonist [1-butyl-3-(3-hydroxypropyl)-8-(3-noradamantyl)xanthine (PSB36), 40 nM]. Furthermore, to interfere with the endogenous adenosine release, the ecto-5'-nucleotidase (CD73) inhibitor was applied [5'-(α,ß-methylene) diphosphate sodium salt (AMPCP), 500 µM]. Isolated trabeculae from human right atrial appendages (hRAAs) were used for comparison. RESULTS: As expected, CCPA shortened AP duration at 90% of repolarization (APD90) and effective refractory period (ERP) in rat atria. PSB36 prolonged APD90 and ERP in rat atria, and CD73 inhibition with AMPCP prolonged ERP in rats, confirming that endogenously produced amount of adenosine is sufficiently high to alter atrial electrophysiology. In human atrial appendages, CCPA shortened APD90, while PSB36 prolonged it. Rat hearts treated with CCPA are prone to AF. In contrast, PSB36 and AMPCP prevented AF events and reduced AF duration (vehicle, 11.5 ± 2.6 s; CCPA, 40.6 ± 16.1 s; PSB36, 6.5 ± 3.7 s; AMPCP, 3.0 ± 1.4 s; P < 0.0001). CONCLUSION: A1-R activation by intrinsic adenosine release alters atrial electrophysiology and promotes AF. Inhibition of adenosine pathway protects atria from arrhythmic events.

19.
Front Pharmacol ; 11: 159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180722

RESUMEN

AIMS: To describe the effects of the KCa2 channel inhibitor AP30663 in pigs regarding tolerability, cardiac electrophysiology, pharmacokinetics, atrial functional selectivity, effectiveness in cardioversion of tachy-pacing induced vernakalant-resistant atrial fibrillation (AF), and prevention of reinduction of AF. METHODS AND RESULTS: Six healthy pigs with implanted pacemakers and equipped with a Holter monitor were used to compare the effects of increasing doses (0, 5, 10, 15, 20, and 25 mg/kg) of AP30663 on the right atrial effective refractory period (AERP) and on various ECG parameters, including the QT interval. Ten pigs with implanted neurostimulators were long-term atrially tachypaced (A-TP) until sustained vernakalant-resistant AF was present. 20 mg/kg AP30663 was tested to discover if it could successfully convert vernakalant-resistant AF to sinus rhythm (SR) and protect against reinduction of AF. Seven anesthetized pigs were used for pharmacokinetic experiments. Two pigs received an infusion of 20 mg/kg AP30663 over 60 min while five pigs received 5 mg/kg AP30663 over 30 min. Blood samples were collected before, during, and after infusion on AP30663. AP30663 was well-tolerated and prominently increased the AERP in pigs with little effect on ventricular repolarization. Furthermore, it converted A-TP induced AF that had become unresponsive to vernakalant, and it prevented reinduction of AF in pigs. Both a >30 ms increase of the AERP and conversion of AF occurred in different pigs at a free plasma concentration level of around 1.0-1.4 µM of AP30663, which was achieved at a dose level of 5 mg/kg. CONCLUSION: AP30663 has shown properties in animals that would be of clinical interest in man.

20.
Front Pharmacol ; 11: 749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508659

RESUMEN

BACKGROUND: Hypokalemia reduces the cardiac repolarization reserve. This prolongs the QT-interval and increases the risk of ventricular arrhythmia; a risk that is exacerbated by administration of classical class 3 anti-arrhythmic agents.Small conductance Ca2+-activated K+-channels (KCa2) are a promising new atrial selective target for treatment of atrial fibrillation. Under physiological conditions KCa2 plays a minor role in ventricular repolarization. However, this might change under hypokalemia because of concomitant increases in ventriculay -60r intracellur Ca2+. PURPOSE: To study the effects of pharmacological KCa2 channel inhibition by the compounds AP14145, ICA, or AP30663 under hypokalemic conditions as compared to dofetilide and hypokalemia alone time-matched controls (TMC). METHODS: The current at +10 mV was compared in HEK293 cells stably expressing KCa2.3 perfused first with normo- and then hypokalemic solutions (4 mM K+ and 2.5 mM K+, respectively). Guinea pig hearts were isolated and perfused with normokalemic (4 mM K+) Krebs-Henseleit solution, followed by perfusion with drug or vehicle control. The perfusion was then changed to hypokalemic solution (2.5 mM K+) in presence of drug. 30 animals were randomly assigned to 5 groups: ICA, AP14145, AP30663, dofetilide, or TMC. QT-interval, the interval from the peak to the end of the T wave (Tp-Te), ventricular effective refractory period (VERP), arrhythmia score, and ventricular fibrillation (VF) incidence were recorded. RESULTS: Hypokalemia slightly increased KCa2.3 current compared to normokalemia. Application of KCa2 channel inhibitors and dofetilide prolonged the QT interval corrected for heart rate. Dofetilide, but none of the KCa2 channel inhibitors increased Tp-Te during hypokalemia. During hypokalemia 4/6 hearts in the TMC group developed VF (two spontaneously, two by S1S2 stimulation) whereas 5/6 hearts developed VF in the dofetilide group (two spontaneously, three by S1S2 stimulation). In comparison, 0/6, 1/6, and 1/6 hearts developed VF when treated with the KCa2 channel inhibitors AP30663, ICA, or AP14145, respectively. CONCLUSION: Hypokalemia was associated with an increased incidence of VF, an effect that also seen in the presence of dofetilide. In comparison, the structurally and functionally different KCa2 channel inhibitors, ICA, AP14145, and AP30663 protected the heart from hypokalemia induced VF. These results support that KCa2 inhibition may be associated with a better safety and tolerability profile than dofetilide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA