Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 140(5): 451-463, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35605184

RESUMEN

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).


Asunto(s)
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Animales , Antígenos CD19 , Síndrome de Liberación de Citoquinas , Citocinas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Recurrencia , Linfocitos T
2.
Mol Oncol ; 18(7): 1695-1718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38922759

RESUMEN

Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells have demonstrated remarkable success in the treatment of relapsed/refractory melanoma and hematological malignancies, respectively. These treatments have marked a pivotal shift in cancer management. However, as "living drugs," their effectiveness is dependent on their ability to proliferate and persist in patients. Recent studies indicate that the mechanisms regulating these crucial functions, as well as the T cell's differentiation state, are conditioned by metabolic shifts and the distinct utilization of metabolic pathways. These metabolic shifts, conditioned by nutrient availability as well as cell surface expression of metabolite transporters, are coupled to signaling pathways and the epigenetic landscape of the cell, modulating transcriptional, translational, and post-translational profiles. In this review, we discuss the processes underlying the metabolic remodeling of activated T cells, the impact of a tumor metabolic environment on T cell function, and potential metabolic-based strategies to enhance T cell immunotherapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Inmunoterapia Adoptiva/métodos
3.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38298420

RESUMEN

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

4.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35852863

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies targeting single antigens have performed poorly in clinical trials for solid tumors due to heterogenous expression of tumor-associated antigens (TAAs), limited T cell persistence, and T cell exhaustion. Here, we aimed to identify optimal CARs against glypican 2 (GPC2) or CD276 (B7-H3), which were highly but heterogeneously expressed in neuroblastoma (NB), a lethal extracranial solid tumor of childhood. First, we examined CAR T cell expansion in the presence of targets by digital droplet PCR. Next, using pooled competitive optimization of CAR by cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), termed P-COCC, we simultaneously analyzed protein and transcriptome expression of CAR T cells to identify high-activity CARs. Finally, we performed cytotoxicity assays to identify the most effective CAR against each target and combined the CARs into a bicistronic "OR" CAR (BiCisCAR). BiCisCAR T cells effectively eliminated tumor cells expressing GPC2 or CD276. Furthermore, the BiCisCAR T cells demonstrated prolonged persistence and resistance to exhaustion when compared with CARs targeting a single antigen. This study illustrated that targeting multiple TAAs with BiCisCAR may overcome heterogenous expression of target antigens in solid tumors and identified a potent, clinically relevant CAR against NB. Moreover, our multimodal approach integrating competitive expansion, P-COCC, and cytotoxicity assays is an effective strategy to identify potent CARs among a pool of candidates.


Asunto(s)
Neuroblastoma , Receptores Quiméricos de Antígenos , Antígenos de Neoplasias/genética , Antígenos B7 , Línea Celular Tumoral , Glipicanos/genética , Humanos , Inmunoterapia Adoptiva , Neuroblastoma/genética , Neuroblastoma/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34503088

RESUMEN

CD19-directed CAR T-cells have been remarkably successful in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and transformed follicular lymphoma (t-FL). In this cohort study, we treated 60 patients with axicabtagene ciloleucel or tisagenlecleucel. Complete and partial metabolic responses (CMR/PMR) were obtained in 40% and 23% of patients, respectively. After 6.9 months of median follow-up, median progression-free survival (mPFS) and overall survival (mOS) were estimated at 3.1 and 12.3 months, respectively. Statistical analyses revealed that CMR, PFS, and OS were all significantly associated with age-adjusted international prognostic index (aaIPI, p < 0.05). T-cell subset phenotypes in the apheresis product tended to correlate with PFS. Within the final product, increased percentages of both CD4 and CD8 CAR+ effector memory cells (p = 0.02 and 0.01) were significantly associated with CMR. Furthermore, higher CMR/PMR rates were observed in patients with a higher maximal in vivo expansion of CAR T-cells (p = 0.05) and lower expression of the LAG3 and Tim3 markers of exhaustion phenotype (p = 0.01 and p = 0.04). Thus, we find that aaIPI at the time of infusion, phenotype of the CAR T product, in vivo CAR T-cell expansion, and low levels of LAG3/Tim3 are associated with the efficacy of CAR T-cell therapy in DLBCL patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA