Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 72(6): 1035-1049.e5, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30503769

RESUMEN

Membrane-less organelles (MLOs) are liquid-like subcellular compartments that form through phase separation of proteins and RNA. While their biophysical properties are increasingly understood, their regulation and the consequences of perturbed MLO states for cell physiology are less clear. To study the regulatory networks, we targeted 1,354 human genes and screened for morphological changes of nucleoli, Cajal bodies, splicing speckles, PML nuclear bodies (PML-NBs), cytoplasmic processing bodies, and stress granules. By multivariate analysis of MLO features we identified hundreds of genes that control MLO homeostasis. We discovered regulatory crosstalk between MLOs, and mapped hierarchical interactions between aberrant MLO states and cellular properties. We provide evidence that perturbation of pre-mRNA splicing results in stress granule formation and reveal that PML-NB abundance influences DNA replication rates and that PML-NBs are in turn controlled by HIP kinases. Together, our comprehensive dataset is an unprecedented resource for deciphering the regulation and biological functions of MLOs.


Asunto(s)
Orgánulos/genética , Estrés Fisiológico/genética , Biología de Sistemas/métodos , Transcriptoma , Replicación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células HeLa , Humanos , Orgánulos/metabolismo , Transición de Fase , Interferencia de ARN , Precursores del ARN/genética , ARN Mensajero/genética , Transducción de Señal/genética , Análisis de la Célula Individual
2.
Neuromuscul Disord ; 33(11): 845-855, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722988

RESUMEN

Spinal muscular atrophy (SMA) is characterized by progressive muscle weakness and paralysis. Motor function is monitored in the clinical setting using assessments including the 32-item Motor Function Measure (MFM-32), but changes in disease severity between clinical visits may be missed. Digital health technologies may assist evaluation of disease severity by bridging gaps between clinical visits. We developed a smartphone sensor-based assessment suite, comprising nine tasks, to assess motor and muscle function in people with SMA. We used data from the risdiplam phase 2 JEWELFISH trial to assess the test-retest reliability and convergent validity of each task. In the first 6 weeks, 116 eligible participants completed assessments on a median of 6.3 days per week. Eight of the nine tasks demonstrated good or excellent test-retest reliability (intraclass correlation coefficients >0.75 and >0.9, respectively). Seven tasks showed a significant association (P < 0.05) with related clinical measures of motor function (individual items from the MFM-32 or Revised Upper Limb Module scales) and seven showed significant association (P < 0.05) with disease severity measured using the MFM-32 total score. This cross-sectional study supports the feasibility, reliability, and validity of using smartphone-based digital assessments to measure function in people living with SMA.


Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Humanos , Reproducibilidad de los Resultados , Teléfono Inteligente , Estudios de Factibilidad , Estudios Transversales , Extremidad Superior , Atrofias Musculares Espinales de la Infancia/complicaciones
3.
Chromosome Res ; 19(2): 165-82, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21249442

RESUMEN

We used chicken retinospheroids (RS) to study the nuclear architecture of vertebrate cells in a three-dimensional (3D) cell culture system. The results showed that the different neuronal cell types of RS displayed an extreme form of radial nuclear organization. Chromatin was arranged into distinct radial zones which became already visible after DAPI staining. The distinct zones were enriched in different chromatin modifications and in different types of chromosomes. Active isoforms of RNA polymerase II were depleted in the outermost zone. Also chromocenters and nucleoli were radially aligned in the nuclear interior. The splicing factor SC35 was enriched at the central zone and did not show the typical speckled pattern of distribution. Evaluation of neuronal and non-neuronal chicken tissues showed that the highly ordered form of radial nuclear organization was also present in neuronal chicken tissues. Furthermore, the data revealed that the neuron-specific nuclear organization was remodeled when cells spread on a flat substrate. Monolayer cultures of a chicken cell line did not show this extreme form of radial organization. Rather, such monolayer cultures displayed features of nuclear organization which have been described before for many different types of monolayer cells. The finding that an extreme form radial nuclear organization, which has not been described before, is present in RS and tissues, but not in cells spread on a flat substrate, suggests that it would be important to complement studies on nuclear architecture performed with monolayer cells by studies on 3D cell culture systems and tissues.


Asunto(s)
Núcleo Celular/ultraestructura , Neuronas/ultraestructura , Animales , Técnicas de Cultivo de Célula/métodos , Pollos , Cromatina , Cromosomas , Neuronas/citología
4.
Nat Phys ; 18(5): 571-578, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582428

RESUMEN

Many membraneless organelles are liquid-like domains that form inside the active, viscoelastic environment of living cells through phase separation. To investigate the potential coupling of phase separation with the cytoskeleton, we quantify the structural correlations of membraneless organelles (stress granules) and cytoskeletal filaments (microtubules) in a human-derived epithelial cell line. We find that microtubule networks are substantially denser in the vicinity of stress granules. When microtubules are depolymerized, the sub-units localize near the surface of the stress granules. We interpret these data using a thermodynamic model of partitioning of particles to the surface and bulk of the droplets. In this framework, our data are consistent with a weak (≲k B T) affinity of the microtubule sub-units for stress granule interfaces. As microtubules polymerize, their interfacial affinity increases, providing sufficient adhesion to deform droplets and/or the network. Our work suggests that proteins and other objects in the cell have a non-specific affinity for droplet interfaces that increases with the contact area and becomes most apparent when they have no preference for the interior of a droplet over the rest of the cytoplasm. We validate this basic physical phenomenon in vitro through the interaction of a simple protein-RNA condensate with microtubules.

6.
Nat Cell Biol ; 14(5): 542-7, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22504275

RESUMEN

The plasma membrane delimits the cell, and its integrity is essential for cell survival. Lipids and proteins form domains of distinct composition within the plasma membrane. How changes in plasma membrane composition are perceived, and how the abundance of lipids in the plasma membrane is regulated to balance changing needs remains largely unknown. Here, we show that the Slm1/2 paralogues and the target of rapamycin kinase complex 2 (TORC2) play a central role in this regulation. Membrane stress, induced by either inhibition of sphingolipid metabolism or by mechanically stretching the plasma membrane, redistributes Slm proteins between distinct plasma membrane domains. This increases Slm protein association with and activation of TORC2, which is restricted to the domain known as the membrane compartment containing TORC2 (MCT; ref. ). As TORC2 regulates sphingolipid metabolism, our discoveries reveal a homeostasis mechanism in which TORC2 responds to plasma membrane stress to mediate compensatory changes in cellular lipid synthesis and hence modulates the composition of the plasma membrane. The components of this pathway and their involvement in signalling after membrane stretch are evolutionarily conserved.


Asunto(s)
Estrés Oxidativo , Proteínas de Unión al ARN/metabolismo , Esfingolípidos/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Membrana Celular/metabolismo , Humanos , Transporte de Proteínas
7.
Mol Biol Cell ; 20(5): 1565-75, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19144819

RESUMEN

The conserved target of rapamycin (TOR) kinases regulate many aspects of cellular physiology. They exist in two distinct complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2), that posses both overlapping and distinct components. TORC1 and TORC2 respond differently to the drug rapamycin and have different cellular functions: whereas the rapamycin-sensitive TORC1 controls many aspects of cell growth and has been characterized in great detail, the TOR complex 2 is less understood and regulates actin polymerization, cell polarity, and ceramide metabolism. How signaling specificity and discrimination between different input signals for the two kinase complexes is achieved is not understood. Here, we show that TORC1 and TORC2 have different localizations in Saccharomyces cerevisiae. TORC1 is localized exclusively to the vacuolar membrane, whereas TORC2 is localized dynamically in a previously unrecognized plasma membrane domain, which we term membrane compartment containing TORC2 (MCT). We find that plasma membrane localization of TORC2 is essential for viability and mediated by lipid binding of the C-terminal domain of the Avo1 subunit. From these data, we suggest that the TOR complexes are spatially separated to determine downstream signaling specificity and their responsiveness to different inputs.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Supervivencia Celular , Proteínas Fluorescentes Verdes/análisis , Membranas Intracelulares/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Subunidades de Proteína/análisis , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA