Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630279

RESUMEN

Organic light-emitting diodes (OLEDs) have revolutionized the world of technology, making significant contributions to enhancing our everyday lives. With their exceptional display and lighting capabilities, OLEDs have become indispensable in various industries such as smartphones, tablets, televisions, and automotives. They have emerged as a dominant technology, inspiring continuous advancements, and improvements. Taking inspiration from the remarkable advancements in OLED advancements, we have successfully developed naphtalimide-based compounds, namely RB-08, RB-09, RB-10, and RB-11. These compounds exhibit desirable characteristics such as a wide bandgap, high decomposition temperatures (306-366 °C), and very high glass transition temperatures (133-179 °C). Leveraging these exceptional properties, we have harnessed these compounds as green emitters in the aforementioned devices. Among the various fabricated OLEDs, the one incorporating the RB-11 emitter has exhibited superior performance. This specific configuration achieved maximum power efficacy of 7.7 lm/W, current efficacy of 7.9 cd/A, and external quantum efficiency of 3.3%. These results highlight the outstanding capabilities of our synthesized emitter and its potential for further advancements in the field.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122832, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290242

RESUMEN

Fluorene-based low molar weight derivatives were synthesized in Suzuki reactions by using key starting materials 9-benzylidene-2,7-dibromofluorene or 3-(2,7-dibromofluoren-9-ylmethylen)-9-ethylcarbazole and various aryl boronic acids. Photophysical properties of the compounds were investigated in different solutions as well as in solid state. The thermal investigations showed that the obtained compounds are highly thermally stable with temperatures of 5% mass loss (T5%) in the range of 311-432 °C. Some of the compounds also exhibited very high glass transition temperatures exceeding 125 °C. The presented molecules were electrochemically active and showed the energy band gap below 2.97 eV. The investigations were supported by DFT calculations and the photovoltaic ability of the presented compounds was tested in the organic-inorganic solar cells.


Asunto(s)
Ácidos Borónicos , Fluorenos , Teoría Funcional de la Densidad , Modelos Teóricos
3.
Adv Sci (Weinh) ; 10(35): e2304790, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37867208

RESUMEN

Further improvement of the performance and stability of inverted perovskite solar cells (PSCs) is necessary for commercialization. Here, ferrocene derivative dibenzoylferrocene (DBzFe) is used as an additive to enhance the performance and stability of MA- and Br- free PSCs. The results show that the introduction of DBzFe not only passivates the defects in the film but also inhibits the ion migration in the film. The final device achieves a power conversion efficiency (PCE) of 23.53%, which is one of the highest efficiencies currently based on self-assembled monolayers (SAMs). Moreover, it maintains more than 96.4% of the original efficiency when running continuously for 400 h at the maximum power point.

4.
ACS Appl Mater Interfaces ; 15(35): 41549-41559, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37606594

RESUMEN

This report is on the efficiency enhancement of wide bandgap lead halide perovskite solar cells (WBG Pb-PVK PSCs) consisting of FA0.8Cs0.2PbI1.8Br1.2 as the light-harvesting layer. WGB Pb-PVK PSCs have attracted attention as the top layer of all perovskite-tandem solar cells. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), a conductive polymer, is always used as the hole transporting layer (HTL) for Pb-PVK PSCs. Nevertheless, the hydrophobic surface of the PTAA sometimes destroys the growth of the FA0.8Cs0.2PbI1.8Br1.2 film. On the other hand, the Fermi level of PTAA is not well matched with that of perovskite film. Thus, the PCE of the WBG Pb-based PSCs with PTAA as the HTL was not very high. In this report, the efficiency of the FA0.8Cs0.2PbI1.8Br1.2 is improved by passivating the surface of the PTAA with a monomolecular layer, where the surface becomes hydrophilic, and the band bending of the PTAA layer is improved to cause swift hole collection. Finally, WBG Pb-PVK PSCs (1.77 eV) with 16.52% efficiency are reported.

5.
Materials (Basel) ; 14(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34639966

RESUMEN

Novel oxetane-functionalized derivatives were synthesized to find the impact of carbazole substituents, such as 1-naphtyl, 9-ethylcarbazole and 4-(diphenylamino)phenyl, on their thermal, photophysical and electrochemical properties. Additionally, to obtain the optimized ground-state geometry and distribution of the frontier molecular orbital energy levels, density functional theory (DFT) calculations were used. Thermal investigations showed that the obtained compounds are highly thermally stable up to 360 °C, as molecular glasses with glass transition temperatures in the range of 142-165 °C. UV-Vis and photoluminescence studies were performed in solvents of differing in polarity, in the solid state as a thin film on glass substrate, and in powders, and were supported by DFT calculations. They emitted radiation both in solution and in film with photoluminescence quantum yield from 4% to 87%. Cyclic voltammetry measurements revealed that the materials undergo an oxidation process. Next, the synthesized molecules were tested as hole transporting materials (HTM) in perovskite solar cells with the structure FTO/b-TiO2/m-TiO2/perovskite/HTM/Au, and photovoltaic parameters were compared with the reference device without the oxetane derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA