Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 24(4): 91, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977945

RESUMEN

Tribo-charging is often a root cause of mass flow deviations and powder adhesion during continuous feeding. Thus, it may critically impact product quality. In this study, we characterized the volumetric (split- and pre-blend) feeding behavior and process-induced charge of two direct compression grades of polyols, galenIQ™ 721 (G721) for isomalt and PEARLITOL® 200SD (P200SD) for mannitol, under different processing conditions. The feeding mass flow range and variability, hopper end fill level, and powder adhesion were profiled. The feeding-induced tribo-charging was measured using a Faraday cup. Both materials were comprehensively characterized for relevant powder properties, and their tribo-charging was investigated for its dependence on particle size and relative humidity. During split-feeding experiments, G721 showed a comparable feeding performance to P200SD with lower tribo-charging and adhesion to the screw outlet of the feeder. Depending on the processing condition, the charge density of G721 ranged from -0.01 up to -0.39 nC/g, and for P200SD from -3.19 up to -5.99 nC/g. Rather than differences in the particle size distribution of the two materials, their distinct surface and structural characteristics were found as the main factors affecting their tribo-charging. The good feeding performance of both polyol grades was also maintained during pre-blend feeding, where reduced tribo-charging and adhesion propensity was observed for P200SD (decreasing from -5.27 to -0.17 nC/g under the same feeding settings). Here, it is proposed that the mitigation of tribo-charging occurs due to a particle size-driven mechanism.


Asunto(s)
Manitol , Tecnología Farmacéutica , Polvos/química , Tamaño de la Partícula
2.
Mol Pharm ; 19(2): 547-557, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35044180

RESUMEN

The impact of the crystallinity of organic solid materials on their tribocharging propensity is well reported. However, no unequivocal explanation about the potential underlying mechanism(s) could be found so far in the literature. This study reports the effect that different degrees of crystalline disorder has on the tribocharging propensity of a small molecular organic material, salbutamol sulfate (SS). Ball-milling was used to induce structural transformations in the crystalline structure of SS. Particles with different nanostructures were produced and analyzed for their solid-state, particle properties, and tribocharging. It was found that differences in the amorphous content among the processed particles and related moisture levels had an impact on powder tribocharging. A correlation between the latter and the nanostructural properties of the particles was also established. The presence of interfaces between nanodomains of different densities and shorter average lengths within the phases seems to lead to a mitigation of charge. This suggests that undetected, subtle nanostructural differences of materials can affect powder handling and processability by altering their tribocharging. The present findings demonstrate the nanostructural implications of powder triboelectrification, which can help toward the rational design of a wide variety of organic solids.


Asunto(s)
Albuterol , Nanoestructuras , Albuterol/química , Tamaño de la Partícula , Polvos/química , Sulfatos
3.
AAPS PharmSciTech ; 18(8): 2971-2976, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28462464

RESUMEN

Co-extrusion offers a number of advantages over conventional manufacturing techniques. However, the setup of a co-extrusion line is cost- and time-intense and formulation development is challenging. This work introduces a novel procedure to test the applicability of a co-extruded reservoir-type system at an early product development stage. We propose vacuum compression molding (VCM), a fast procedure that requires only small material amounts, for the manufacturing of cylindrical reservoir-type system. To this end, the commercially available co-extruded product NuvaRing® and variations thereof were used as test systems. All VCM systems showed a homogeneous skin thickness that adhered well to the core, thereby providing a precise core/skin interface. As drug release is a key criterion for pharmaceutical products, a modified in vitro dissolution method was set up to test the VCM systems. The drug release from the VCM systems was in the same order of magnitude as the corresponding co-extruded strands and followed the same release kinetics. Moreover, the VCM systems were capable of indicating the relative effect of formulation-related modifications on drug release. Overall, this shows that this system is a powerful tool that facilitates formulation tailoring and co-extrusion process setup at the earliest stage.


Asunto(s)
Química Farmacéutica/métodos , Desogestrel/análogos & derivados , Etinilestradiol/síntesis química , Química Farmacéutica/instrumentación , Preparaciones de Acción Retardada/síntesis química , Desogestrel/síntesis química , Combinación de Medicamentos , Composición de Medicamentos , Liberación de Fármacos , Vacio
4.
Int J Pharm ; 664: 124626, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39208952

RESUMEN

The manufacturing of tablets containing biologics exposes the biologics to thermal and shear stresses, which are likely to induce structural changes (e.g., aggregation and denaturation), leading to the loss of their activity. Saccharides often act as stabilizers of proteins in formulations, yet their stabilizing ability throughout solid oral dosage processing, such as tableting, has been barely studied. This work aimed to investigate the effects of formulation and process (tableting and spray-drying) variables on catalase tablets containing dextran, mannitol, and trehalose as potential stabilizers. Non-spray-dried and spray-dried formulations were prepared and tableted (100, 200, and 400 MPa). The enzymatic activity, number of aggregates, reflecting protein aggregation and structure modifications were studied. A principal component analysis was performed to reveal underlying correlations. It was found that tableting and spray-drying had a notable negative effect on the activity and number of aggregates formed in catalase formulations. Overall, dextran and mannitol failed to preserve the catalase activity in any unit operation studied. On the other hand, trehalose was found to preserve the activity during spray-drying but not necessarily during tableting. The study demonstrated that formulation and process variables must be considered and optimized together to preserve the characteristics of catalase throughout processing.


Asunto(s)
Catalasa , Dextranos , Composición de Medicamentos , Excipientes , Manitol , Comprimidos , Trehalosa , Catalasa/química , Trehalosa/química , Manitol/química , Dextranos/química , Excipientes/química , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Secado por Pulverización , Agregado de Proteínas
5.
Int J Pharm ; 666: 124773, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343328

RESUMEN

Powder blending is a critical step in pharmaceutical manufacturing that can impact product quality such as tablet tensile strength. This study utilized the Discrete Element Method (DEM) to investigate blending in a 5-liter mini-batch and a 2-liter Turbula blender. DEM parameters were calibrated using small-scale powder characterization tests, so that the particle behavior in the DEM simulations matches the measured behavior. The research explored the effects of blender designs and process conditions on blending and lubricant dispersion. A predictive model for tablet tensile strength was developed. The model takes the lubricant's dispersion via the lubrication energy into account. The model is then used to predict the tablet tensile strength depending on the chosen process parameters, blending speed, duration, and fill level. DEM simulations enabled scaling between the two blenders, providing valuable insights for a semi-continuous manufacturing process based on mini-batch blending. The findings contribute to a deeper understanding of blending mechanics, offering potential enhancements in pharmaceutical manufacturing efficiency and product consistency.

6.
Int J Pharm ; 666: 124796, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366530

RESUMEN

In this work, a high-fidelity digital twin was developed to support the design and testing of control strategies for drug product manufacturing via direct compression. The high-fidelity digital twin platform was based on typical pharmaceutical equipment, materials, and direct compression continuous processes. The paper describes in detail the material characterization, the Discrete Element Method (DEM) model and the DEM model parameter calibration approach and provides a comparison of the system's response to the experimental results for stepwise changes in the API concentration at the mixer inlet. A calibration method for a cohesive DEM contact model parameter estimation was introduced. To assure a correct prediction for a wide range of processes, the calibration approach contained four characterization experiments using different stress states and different measurement principles, namely the bulk density test, compression with elastic recovery, the shear cell, and the rotating drum. To demonstrate the sensitivity of the DEM contact parameters to the process response, two powder characterization data sets with different powder flowability were applied. The results showed that the calibration method could differentiate between the different material batches of the same blend and that small-scale material characterization tests could be used to predict the residence time distribution in a continuous manufacturing process.

7.
Int J Pharm ; 666: 124797, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368673

RESUMEN

This paper is the second in a series of two that describes the application of discrete element method (DEM) and reduced order modeling to predict the effect of disturbances in the concentration of drug substance at the inlet of a continuous powder mixer on the concentration of the drug substance at the outlet of the mixer. In the companion publication, small-scale material characterization tests, a careful DEM parameter calibration and DEM simulations of the manufacturing process were used to develop a reliable RTD models. In the current work, the same calibration workflow was employed to evaluate the predictive ability of the resulting reduced-order model for an extended design space. DEM simulations were extrapolated using a relay race method and the cumulative RTD was accurately parameterized using the n-CSTR model. By performing experiments and simulations, a calibrated DEM model predicted the response of a continuous powder mixer to step changes in the inlet concentration of an API. Thus, carefully calibrated DEM models was used to guide and reduce experimental work and to establish an adequate control strategy. In addition, a further reduction in the computational effort was obtained by using the relay race method to extrapolate results. The predicted RTD curves were then parameterized to develop reduced order models and used to simulate the process in a matter of seconds. Overall, a control strategy evaluation tool based on high-fidelity DEM simulations was developed using material-sparing small-scale characterization tests.

8.
Int J Pharm ; 629: 122364, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343905

RESUMEN

Powder feeding is of critical importance for continuous manufacturing (CM) since next to in-process segregation it is the phenomenon primarily responsible for fluctuations in content uniformity and for content deviations in the final drug product. So far, feeding studies have focused on the characterization of specific feeders and the prediction of their performance for various materials. This work presents a more holistic approach, an early general assessment of the "feedability" of raw materials. With that regard, we established a workflow to: i) predict potential feeding issues, such as the flow stagnation in the hopper based on both the material attributes and the feeder's geometry; and ii) predict the feed rate space using various feeder/screw combinations for powders with an acceptable risk of hopper flow stagnation. Statistical models were developed for this twofold approach using a dataset comprising nine powders and four different feeders. In order to include different feeding equipment into the statistical models, novel equipment descriptors (capturing the effect of different geometries) and performance indicators (the end fill level as indicator for the risk of powder flow stagnation) were introduced. The application of the workflow was demonstrated for a simple formulation, and model validation was successfully performed for an additional powder that was not contained in the original dataset. Finally, the most relevant material attributes were identified, and reduced material characterization data sets were investigated in terms of effects on the model's prediction performance. The workflow presents a promising tool for initial process assessment in early-phase development.


Asunto(s)
Química Farmacéutica , Tecnología Farmacéutica , Polvos , Flujo de Trabajo , Emolientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA