Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Eukaryot Gene Expr ; 34(6): 61-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912963

RESUMEN

Objective criteria are required for prostate cancer (PCa) risk assessment, treatment decisions, evaluation of therapy, and initial indications of recurrence. Circulating microRNAs were utilized as biomarkers to distinguish PCa patients from cancer-free subjects or those encountering benign prostate hyperplasia. A panel of 60 microRNAs was developed with established roles in PCa initiation, progression, metastasis, and recurrence. Utilizing the FirePlex® platform for microRNA analysis, we demonstrated the efficacy and reproducibility of a rapid, high-throughput, serum-based assay for PCa biomarkers that circumvents the requirement for extraction and fractionation of patient specimens supporting feasibility for expanded clinical research and diagnostic applications.


Asunto(s)
Biomarcadores de Tumor , MicroARNs , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/diagnóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , MicroARNs/genética , MicroARNs/sangre , Medición de Riesgo/métodos
2.
J Med Internet Res ; 22(12): e24048, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33226957

RESUMEN

BACKGROUND: Conventional diagnosis of COVID-19 with reverse transcription polymerase chain reaction (RT-PCR) testing (hereafter, PCR) is associated with prolonged time to diagnosis and significant costs to run the test. The SARS-CoV-2 virus might lead to characteristic patterns in the results of widely available, routine blood tests that could be identified with machine learning methodologies. Machine learning modalities integrating findings from these common laboratory test results might accelerate ruling out COVID-19 in emergency department patients. OBJECTIVE: We sought to develop (ie, train and internally validate with cross-validation techniques) and externally validate a machine learning model to rule out COVID 19 using only routine blood tests among adults in emergency departments. METHODS: Using clinical data from emergency departments (EDs) from 66 US hospitals before the pandemic (before the end of December 2019) or during the pandemic (March-July 2020), we included patients aged ≥20 years in the study time frame. We excluded those with missing laboratory results. Model training used 2183 PCR-confirmed cases from 43 hospitals during the pandemic; negative controls were 10,000 prepandemic patients from the same hospitals. External validation used 23 hospitals with 1020 PCR-confirmed cases and 171,734 prepandemic negative controls. The main outcome was COVID 19 status predicted using same-day routine laboratory results. Model performance was assessed with area under the receiver operating characteristic (AUROC) curve as well as sensitivity, specificity, and negative predictive value (NPV). RESULTS: Of 192,779 patients included in the training, external validation, and sensitivity data sets (median age decile 50 [IQR 30-60] years, 40.5% male [78,249/192,779]), AUROC for training and external validation was 0.91 (95% CI 0.90-0.92). Using a risk score cutoff of 1.0 (out of 100) in the external validation data set, the model achieved sensitivity of 95.9% and specificity of 41.7%; with a cutoff of 2.0, sensitivity was 92.6% and specificity was 59.9%. At the cutoff of 2.0, the NPVs at a prevalence of 1%, 10%, and 20% were 99.9%, 98.6%, and 97%, respectively. CONCLUSIONS: A machine learning model developed with multicenter clinical data integrating commonly collected ED laboratory data demonstrated high rule-out accuracy for COVID-19 status, and might inform selective use of PCR-based testing.


Asunto(s)
COVID-19/diagnóstico , Servicio de Urgencia en Hospital , Pruebas Hematológicas/métodos , Aprendizaje Automático/normas , Adulto , Anciano , Área Bajo la Curva , Femenino , Hospitales , Humanos , Laboratorios , Masculino , Persona de Mediana Edad , Pandemias , Curva ROC , Reproducibilidad de los Resultados , SARS-CoV-2 , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA