Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Dev Genes Evol ; 228(1): 31-48, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29264645

RESUMEN

Deciphering the evolution of morphological structures is a remaining challenge in the field of developmental biology. The respiratory structures of insect eggshells, called the dorsal appendages, provide an outstanding system for exploring these processes since considerable information is known about their patterning and morphogenesis in Drosophila melanogaster and dorsal appendage number and morphology vary widely across Drosophilid species. We investigated the patterning differences that might facilitate morphogenetic differences between D. melanogaster, which produces two oar-like structures first by wrapping and then elongating the tubes via cell intercalation and cell crawling, and Scaptodrosophila lebanonensis, which produces a variable number of appendages simply by cell intercalation and crawling. Analyses of BMP pathway components thickveins and P-Mad demonstrate that anterior patterning is conserved between these species. In contrast, EGF signaling exhibits significant differences. Transcripts for the ligand encoded by gurken localize similarly in the two species, but this morphogen creates a single dorsolateral primordium in S. lebanonensis as defined by activated MAP kinase and the downstream marker broad. Expression patterns of pointed, argos, and Capicua, early steps in the EGF pathway, exhibit a heterochronic shift in S. lebanonensis relative to those seen in D. melanogaster. We demonstrate that the S. lebanonensis Gurken homolog is active in D. melanogaster but is insufficient to alter downstream patterning responses, indicating that Gurken-EGF receptor interactions do not distinguish the two species' patterning. Altogether, these results differentiate EGF signaling patterns between species and shed light on how changes to the regulation of patterning genes may contribute to different tube-forming mechanisms.


Asunto(s)
Drosophila melanogaster/fisiología , Drosophilidae/fisiología , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophilidae/clasificación , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Proteínas HMGB/metabolismo , Masculino , Oogénesis , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo
2.
Dev Biol ; 409(1): 39-54, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26542010

RESUMEN

Most metazoans are able to grow beyond a few hundred cells and to support differentiated tissues because they elaborate multicellular, epithelial tubes that are indispensable for nutrient and gas exchange. To identify and characterize the cellular behaviors and molecular mechanisms required for the morphogenesis of epithelial tubes (i.e., tubulogenesis), we have turned to the D. melanogaster ovary. Here, epithelia surrounding the developing egg chambers first pattern, then form and extend a set of simple, paired, epithelial tubes, the dorsal appendage (DA) tubes, and they create these structures in the absence of cell division or cell death. This genetically tractable system lets us assess the relative contributions that coordinated changes in cell shape, adhesion, orientation, and migration make to basic epithelial tubulogenesis. We find that Dynamin, a conserved regulator of endocytosis and the cytoskeleton, serves a key role in DA tubulogenesis. We demonstrate that Dynamin is required for distinct aspects of DA tubulogenesis: DA-tube closure, DA-tube-cell intercalation, and biased apical-luminal cell expansion. We provide evidence that Dynamin promotes these processes by facilitating endocytosis of cell-cell and cell-matrix adhesion complexes, and we find that precise levels and sub-cellular distribution of E-Cadherin and specific Integrin subunits impact DA tubulogenesis. Thus, our studies identify novel morphogenetic roles (i.e., tube closure and biased apical expansion), and expand upon established roles (i.e., cell intercalation and adhesion remodeling), for Dynamin in tubulogenesis.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endocitosis , Células Epiteliales/citología , Morfogénesis , Ovario/crecimiento & desarrollo , Animales , Tipificación del Cuerpo , Cadherinas/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Epiteliales/metabolismo , Femenino , Genes Dominantes , Integrinas/metabolismo , Masculino , Modelos Biológicos , Ovario/citología , Ovario/metabolismo
3.
Dev Biol ; 378(2): 154-69, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23545328

RESUMEN

Epithelial tubes are the infrastructure for organs and tissues, and tube morphogenesis requires precise orchestration of cell signaling, shape, migration, and adhesion. Follicle cells in the Drosophila ovary form a pair of epithelial tubes whose lumens act as molds for the eggshell respiratory filaments, or dorsal appendages (DAs). DA formation is a robust and accessible model for studying the patterning, formation, and expansion of epithelial tubes. Tramtrack69 (TTK69), a transcription factor that exhibits a variable embryonic DNA-binding preference, controls DA lumen volume and shape by promoting tube expansion; the tramtrack mutation twin peaks (ttk(twk)) reduces TTK69 levels late in oogenesis, inhibiting this expansion. Microarray analysis of wild-type and ttk(twk) ovaries, followed by in situ hybridization and RNAi of candidate genes, identified the Phospholipase B-like protein Lamina ancestor (LAMA), the scaffold protein Paxillin, the endocytotic regulator Shibire (Dynamin), and the homeodomain transcription factor Mirror, as TTK69 effectors of DA-tube expansion. These genes displayed enriched expression in DA-tube cells, except lama, which was expressed in all follicle cells. All four genes showed reduced expression in ttk(twk) mutants and exhibited RNAi phenotypes that were enhanced in a ttk(twk)/+ background, indicating ttk(twk) genetic interactions. Although previous studies show that Mirror patterns the follicular epithelium prior to DA tubulogenesis, we show that Mirror has an independent, novel role in tube expansion, involving positive regulation of Paxillin. Thus, characterization of ttk(twk)-differentially expressed genes expands the network of TTK69 effectors, identifies novel epithelial tube-expansion regulators, and significantly advances our understanding of this vital developmental process.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epitelio/metabolismo , Ovario/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Epitelio/embriología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Modelos Genéticos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/embriología , Paxillin/genética , Paxillin/metabolismo , Unión Proteica , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
PLoS One ; 19(4): e0302240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625910

RESUMEN

CO2 anesthesia is the most common method for immobilizing Drosophila for research purposes. But CO2 exposure has consequences-it can impact fertility, behavior, morphogenesis, and cytoskeletal dynamics. In this respect, Drosophila is an outstanding model for studying the impact of CO2 exposure on tissues. In this study we explored the response of intracellular pH (pHi) to a one-minute CO2 pulse using a genetically encoded, ubiquitously expressed pH sensor, tpHusion, to monitor pHi within a live, intact, whole fly. We compared wild-type flies to flies lacking Imaginal disc growth factors (Idgfs), which are chitinase-like proteins that facilitate developmental processes and the innate immune response. Morphogenetic and cytoskeletal defects in Idgf-null flies are enhanced after CO2 exposure. We found that pHi drops sharply within seconds of the beginning of a CO2 pulse and recovers over several minutes. The initial profile was nearly identical in control and Idgf-null flies but diverged as the pHi returned to normal. This study demonstrates the feasibility of monitoring pH in live adult Drosophila. Studies exploring pH homeostasis are important for understanding human pathologies associated with pH dysregulation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Drosophila/metabolismo , Dióxido de Carbono , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Concentración de Iones de Hidrógeno , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
5.
Genetics ; 223(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36576887

RESUMEN

Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.


Asunto(s)
Quitinasas , Proteínas de Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Dióxido de Carbono , Discos Imaginales/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Morfogénesis/genética , Péptidos y Proteínas de Señalización Intracelular
6.
Development ; 136(24): 4187-97, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19934014

RESUMEN

Organ morphogenesis requires cooperation between cells, which determine their course of action based upon location within a tissue. Just as important, cells must synchronize their activities, which requires awareness of developmental time. To understand how cells coordinate behaviors in time and space, we analyzed Drosophila egg chamber development. We found that the transcription factor Tramtrack69 (TTK69) controls the fates and shapes of all columnar follicle cells by integrating temporal and spatial information, restricting characteristic changes in morphology and expression that occur at stage 10B to appropriate domains. TTK69 is required again later in oogenesis: it controls the volume of the dorsal-appendage (DA) tubes by promoting apical re-expansion and lateral shortening of DA-forming follicle cells. We show that TTK69 and Notch compete to repress each other's expression and that a local Ecdysone signal is required to shift the balance in favor of TTK69. We hypothesize that TTK69 then cooperates with spatially restricted co-factors to define appropriate responses to a globally available (but as yet unidentified) temporal signal that initiates the S10B transformations.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Oogénesis/fisiología , Receptores Notch/fisiología , Proteínas Represoras/fisiología , Animales , Diferenciación Celular , Ecdisona/metabolismo , Femenino , Regulación de la Expresión Génica , Folículo Ovárico/citología , Folículo Ovárico/fisiología , Transducción de Señal
7.
Dev Biol ; 346(1): 68-79, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20659448

RESUMEN

The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population.


Asunto(s)
Tipificación del Cuerpo , Drosophila/embriología , Morfogénesis , Folículo Ovárico/embriología , Animales , Proteínas de Drosophila/fisiología , Femenino , Proteínas de Unión al GTP Heterotriméricas/fisiología , Oogénesis , Proteínas Represoras/fisiología , Factor de Crecimiento Transformador beta/fisiología
8.
G3 (Bethesda) ; 10(10): 3585-3599, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32855169

RESUMEN

Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover(cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Glicoproteínas , Discos Imaginales , Péptidos y Proteínas de Señalización Intercelular , Quinasas Asociadas a rho
9.
Trends Genet ; 21(6): 346-55, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15922834

RESUMEN

What are the mechanisms that convert cell-fate information into shape changes and movements, thus creating the biological forms that comprise tissues and organs? Tubulogenesis of the Drosophila dorsal eggshell structures provides an excellent system for studying the link between patterning and morphogenesis. Elegant genetic and molecular analyses from over a decade provide a strong foundation for understanding the combinatorial signaling events that specify dorsal anterior cell fates within the follicular epithelium overlying the oocyte. Recent studies reveal the morphogenetic events that alter that flat epithelial sheet into two tubes; these tubes form the mold for synthesizing the dorsal appendages--eggshell structures that facilitate respiration in the developing embryo. This review summarizes the mutant analyses that give insight into these patterning and morphogenetic processes.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Animales , Tipificación del Cuerpo , Drosophila melanogaster/fisiología , Epitelio/embriología , Epitelio/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Mutación , Oocitos/citología , Oocitos/fisiología , Transducción de Señal
10.
Appl Environ Microbiol ; 73(23): 7622-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17933944

RESUMEN

Photorhabdus luminescens is a gram-negative insect pathogen that enters the hemocoel of infected hosts and produces a number of secreted proteins that promote colonization and subsequent death of the insect. In initial studies to determine the exact role of individual secreted proteins in insect pathogenesis, concentrated culture supernatants from various P. luminescens strains were injected into the tobacco hornworm Manduca sexta. Culture supernatants from P. luminescens TT01, the genome-sequenced strain, stimulated a rapid melanization reaction in M. sexta. Comparison of the profiles of secreted proteins from the various Photorhabdus strains revealed a single protein of approximately 37 kDa that was significantly overrepresented in the TT01 culture supernatant. This protein was purified by DEAE ion-exchange and Superdex 75 gel filtration chromatography and identified by matrix-assisted laser desorption ionization-time of flight analysis as the product of the TT01 gene plu1382 (NCBI accession number NC_005126); we refer to it here as PrtS. PrtS is a member of the M4 metalloprotease family. Injection of PrtS into larvae of M. sexta and Galleria mellonella and into adult Drosophila melanogaster and D. melanogaster melanization mutants (Bc) confirmed that the purified protein induced the melanization reaction. The prtS gene was transcribed by P. luminescens injected into M. sexta before death of the insect, suggesting that the protein was produced during infection. The exact function of this protease during infection is not clear. The bacteria might survive inside the insect despite the melanization process, or it might be that the bacterium is specifically activating melanization in an attempt to circumvent this innate immune response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Manduca/microbiología , Melaninas/metabolismo , Metaloproteasas/metabolismo , Photorhabdus/enzimología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Western Blotting , Medios de Cultivo Condicionados/farmacología , Electroforesis en Gel de Poliacrilamida , Larva/efectos de los fármacos , Larva/metabolismo , Larva/microbiología , Manduca/metabolismo , Metaloproteasas/genética , Metaloproteasas/farmacología , Datos de Secuencia Molecular , Photorhabdus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Dev Cell ; 41(4): 337-348, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28535370

RESUMEN

Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Drosophila melanogaster/embriología , Cáscara de Huevo/embriología , Epitelio/embriología , Modelos Biológicos , Animales , Drosophila melanogaster/metabolismo , Cáscara de Huevo/metabolismo , Epitelio/metabolismo
12.
Genetics ; 206(2): 973-984, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28404605

RESUMEN

Elevated levels of human chitinase-like proteins (CLPs) are associated with numerous chronic inflammatory diseases and several cancers, often correlating with poor prognosis. Nevertheless, there is scant knowledge of their function. The CLPs normally mediate immune responses and wound healing and, when upregulated, they can promote disease progression by remodeling tissue, activating signaling cascades, stimulating proliferation and migration, and by regulating adhesion. We identified Imaginal disc growth factors (Idgfs), orthologs of human CLPs CHI3L1, CHI3L2, and OVGP1, in a proteomics analysis designed to discover factors that regulate tube morphogenesis in a Drosophila melanogaster model of tube formation. We implemented a novel approach that uses magnetic beads to isolate a small population of specialized ovarian cells, cells that nonautonomously regulate morphogenesis of epithelial tubes that form and secrete eggshell structures called dorsal appendages (DAs). Differential mass spectrometry analysis of these cells detected elevated levels of four of the six Idgf family members (Idgf1, Idgf2, Idgf4, and Idgf6) in flies mutant for bullwinkle (bwk), which encodes a transcription factor and is a known regulator of DA-tube morphogenesis. We show that, during oogenesis, dysregulation of Idgfs (either gain or loss of function) disrupts the formation of the DA tubes. Previous studies demonstrate roles for Drosophila Idgfs in innate immunity, wound healing, and cell proliferation and motility in cell culture. Here, we identify a novel role for Idgfs in both normal and aberrant tubulogenesis processes.


Asunto(s)
Quitinasas/genética , Proteínas de Drosophila/genética , Glicoproteínas/genética , Proteómica , Animales , Proteína 1 Similar a Quitinasa-3/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster , Glicoproteínas/biosíntesis , Humanos , Discos Imaginales/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Morfogénesis/genética , Oogénesis/genética , Factores de Transcripción/genética
13.
Mech Dev ; 122(2): 241-55, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15652711

RESUMEN

The Drosophila egg chamber provides an excellent model for studying the link between patterning and morphogenesis. Late in oogenesis, a portion of the flat follicular epithelium remodels to form two tubes; secretion of eggshell proteins into the tube lumens creates the dorsal appendages. Two distinct cell types contribute to dorsal appendage formation: cells expressing the rhomboid-lacZ (rho-lacZ) marker form the ventral floor of the tube and cells expressing high levels of the transcription factor Broad form a roof over the rho-lacZ cells. In mutants that produce defective dorsal appendages (K10, Ras and ectopic decapentaplegic) both cell types are specified and reorganize to occupy their stereotypical locations within the otherwise defective tubes. Although the rho-lacZ and Broad cells rearrange to form a tube in wild type and mutant egg chambers, they never intermingle, suggesting that a boundary exists that prevents mixing between these two cell types. Consistent with this hypothesis, the Broad and rho-lacZ cells express different levels of the homophilic adhesion molecule Fasciclin 3. Furthermore, in the anterior of the egg, ectopic rhomboid is sufficient to induce both cell types, which reorganize appropriately to form an ectopic tube. We propose that signaling across a boundary separating the rho-lacZ and Broad cells choreographs the cell shape-changes and rearrangements necessary to transform an initially flat epithelium into a tube.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oogénesis , Óvulo/metabolismo , Alelos , Animales , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/metabolismo , Linaje de la Célula , Forma de la Célula , Tamaño de la Célula , Cruzamientos Genéticos , Proteínas de Drosophila , Drosophila melanogaster , Epitelio/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Operón Lac , Microscopía Fluorescente , Mutación , Factores de Tiempo
14.
Methods Mol Biol ; 1457: 35-68, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557572

RESUMEN

The development of the Drosophila egg chamber encompasses a myriad of diverse germline and somatic events, and as such, the egg chamber has become a widely used and influential developmental model. Advantages of this system include physical accessibility, genetic tractability, and amenability to microscopy and live culturing, the last of which is the focus of this chapter. To provide adequate context, we summarize the structure of the Drosophila ovary and egg chamber, the morphogenetic events of oogenesis, the history of egg-chamber live culturing, and many of the important discoveries that this culturing has afforded. Subsequently, we discuss various culturing methods that have facilitated analyses of different stages of egg-chamber development and different types of cells within the egg chamber, and we present an optimized protocol for live culturing Drosophila egg chambers.We designed this protocol for culturing late-stage Drosophila egg chambers and live imaging epithelial tube morphogenesis, but with appropriate modifications, it can be used to culture egg chambers of any stage. The protocol employs a liquid-permeable, weighted "blanket" to gently hold egg chambers against the coverslip in a glass-bottomed culture dish so the egg chambers can be imaged on an inverted microscope. This setup provides a more buffered, stable, culturing environment than previously published methods by using a larger volume of culture media, but the setup is also compatible with small volumes. This chapter should aid researchers in their efforts to culture and live-image Drosophila egg chambers, further augmenting the impressive power of this model system.


Asunto(s)
Drosophila/citología , Imagen Molecular/métodos , Oogénesis , Ovario/citología , Óvulo/citología , Animales , Células Cultivadas , Drosophila/embriología , Drosophila/metabolismo , Femenino , Células Germinativas/metabolismo , Microscopía Confocal , Oocitos/metabolismo , Ovario/metabolismo , Óvulo/metabolismo , Imagen de Lapso de Tiempo
15.
Gene Expr Patterns ; 3(5): 629-34, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12971997

RESUMEN

A central question in biology is how developmental mechanisms are altered to bring about morphological evolution. Drosophilids boast a remarkable diversity in eggshell-appendage number-from as few as one to as many as nine, depending on the species. Appendage patterning in Drosophila melanogaster is well characterized, inviting candidate-gene-based approaches that identify the developmental mechanisms underlying Drosophilid eggshell diversity. Previous studies show that a combination of Epidermal growth factor receptor (EGFR) and TGFbeta/BMP2,4 Decapentaplegic (DPP) signaling determines appendage fate in D. melanogaster. Broad-Complex expression integrates EGFR and DPP signaling and predicts future appendage position. Here we present our confocal analyses of BR-C immunofluorescence and appendage morphogenesis in Drosophila melanogaster (two appendages) and Drosophila virilis (four appendages). Our comparison suggests that differences in BR-C patterns among Drosophilids may be strongly influenced by anterior-posterior information.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Composición Corporal , Drosophila melanogaster/embriología , Embrión no Mamífero , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Microscopía Confocal , Morfogénesis , Especificidad de la Especie
16.
Nat Protoc ; 8(11): 2158-79, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24113787

RESUMEN

In situ hybridization (ISH) is a powerful technique for detecting nucleic acids in cells and tissues. Here we describe three ISH procedures that are optimized for Drosophila ovaries: whole-mount, digoxigenin-labeled RNA ISH; RNA fluorescent ISH (FISH); and protein immunofluorescence (IF)-RNA FISH double labeling (IF/FISH). Each procedure balances conflicting requirements for permeabilization, fixation and preservation of antigenicity to detect RNA and protein expression with high resolution and sensitivity. The ISH protocol uses alkaline phosphatase-conjugated digoxigenin antibodies followed by a color reaction, whereas FISH detection involves tyramide signal amplification (TSA). To simultaneously preserve antigens for protein detection and enable RNA probe penetration for IF/FISH, we perform IF before FISH and use xylenes and detergents to permeabilize the tissue rather than proteinase K, which can damage the antigens. ISH and FISH take 3 d to perform, whereas IF/FISH takes 5 d. Probe generation takes 1 or 2 d to perform.


Asunto(s)
Drosophila/metabolismo , Hibridación in Situ/métodos , Ovario/metabolismo , Animales , Detergentes/farmacología , Drosophila/genética , Femenino , Hibridación Fluorescente in Situ/métodos , Ovario/efectos de los fármacos , ARN/análisis , ARN/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Xilenos/farmacología
17.
Dev Cell ; 20(6): 880-7, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21664584

RESUMEN

Developing tissues are patterned by coordinated activities of signaling systems, which can be integrated by a regulatory region of a gene that binds multiple transcription factors or by a transcription factor that is modified by multiple enzymes. Based on a combination of genetic and imaging experiments in the early Drosophila embryo, we describe a signal integration mechanism that cannot be reduced to a single gene regulatory element or a single transcription factor. This mechanism relies on an enzymatic network formed by mitogen-activated protein kinase (MAPK) and its substrates. Specifically, anteriorly localized MAPK substrates, such as Bicoid, antagonize MAPK-dependent downregulation of Capicua, a repressor that is involved in gene regulation along the dorsoventral axis of the embryo. MAPK substrate competition provides a basis for ternary interaction of the anterior, dorsoventral, and terminal patterning systems. A mathematical model of this interaction can explain gene expression patterns with both anteroposterior and dorsoventral polarities.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Femenino , Técnicas para Inmunoenzimas , Hibridación in Situ , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Modelos Teóricos , Fosforilación , Transducción de Señal
18.
Tissue Eng Part A ; 14(9): 1479-88, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18707228

RESUMEN

The reorganization of epithelial sheets into tubes is a fundamental process in the formation of many organs, such as the lungs, kidneys, gut, and neural tube. This process involves the patterning of distinct cell types and the coordination of those cells during the shape changes and rearrangements that produce the tube. A better understanding of the cellular and genetic mechanisms that regulate tube formation is necessary for tissue engineers to develop functional organs in vitro. The Drosophila egg chamber has emerged as an outstanding model for studying tubulogenesis. Synthesis of the dorsal respiratory appendages by the follicular epithelium resembles primary neurulation in vertebrates. This review summarizes work on the patterning and morphogenesis of the dorsal-appendage tubes and highlights key areas where mathematical modeling could contribute to our understanding of these processes.


Asunto(s)
Drosophila/fisiología , Oogénesis/fisiología , Óvulo/citología , Animales , Movimiento Celular , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Oogénesis/genética , Óvulo/metabolismo
19.
Dev Biol ; 297(2): 461-70, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16828735

RESUMEN

Boundaries establish and maintain separate populations of cells critical for organ formation. We show that Notch signaling establishes the boundary between two types of post-mitotic epithelial cells, the Rhomboid- and the Broad-positive cells. These cells will undergo morphogenetic movements to generate the two sides of a simple organ, the dorsal appendage tube of the Drosophila egg chamber. The boundary forms due to a difference in Notch levels in adjacent cells. The Notch expression pattern mimics the boundary; Notch levels are high in Rhomboid cells and low in Broad cells. Notch(-) mutant clones generate an ectopic boundary: ectopic Rhomboid cells arise in Notch(+) cells adjacent to the Notch(-) mutant cells but not further away from the clonal border. Pangolin, a component of the Wingless pathway, is required for Broad expression and for rhomboid repression. We further show that Broad represses rhomboid cell autonomously. Our data provide a foundation for understanding how a single row of Rhomboid cells arises adjacent to the Broad cells in the dorsal appendage primordia. Generating a boundary by the Notch pathway might constitute an evolutionarily conserved first step during organ formation in many tissues.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Receptores Notch/fisiología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Proteínas de la Membrana/metabolismo , Mitosis , Modelos Biológicos , Proteínas Proto-Oncogénicas/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/embriología , Proteína Wnt1
20.
Development ; 129(19): 4423-33, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12223401

RESUMEN

Protein kinase A (PKA) holoenzyme is anchored to specific subcellular regions by interactions between regulatory subunits (Pka-R) and A-kinase anchoring proteins (AKAPs). We examine the functional importance of PKA anchoring during Drosophila oogenesis by analyzing membrane integrity and actin structures in mutants with disruptions in Akap200, an AKAP. In wild-type ovaries, Pka-RII and Akap200 localized to membranes and to the outer rim of ring canals, actin-rich structures that connect germline cells. In Akap200 mutant ovaries, Pka-RII membrane localization decreased, leading to a destabilization of membrane structures and the formation of binucleate nurse cells. Defects in membrane integrity could be mimicked by expressing a constitutively active PKA catalytic subunit (Pka-C) throughout germline cells. Unexpectedly, nurse cells in Akap200 mutant ovaries also had enlarged, thin ring canals. In contrast, overexpressing Akap200 in the germline resulted in thicker, smaller ring canals. To investigate the role of Akap200 in regulating ring canal growth, we examined genetic interactions with other genes that are known to regulate ring canal morphology. Akap200 mutations suppressed the small ring canal phenotype produced by Src64B mutants, linking Akap200 with the non-receptor tyrosine kinase pathway. Together, these results provide the first evidence that PKA localization is required for morphogenesis of actin structures in an intact organism.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Oogénesis/fisiología , Proteínas Proto-Oncogénicas , Proteínas de Anclaje a la Quinasa A , Animales , Proteínas Portadoras/genética , Núcleo Celular , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de la Membrana/genética , Mutagénesis Insercional , Fenotipo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA