Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 90(11): 5415-5426, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009948

RESUMEN

UNLABELLED: Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. IMPORTANCE: Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila This work brings to the front a novel facet of antiviral host defense in insects, which may have relevance in the control of virus transmission by vector insects or in the resistance of beneficial insects to viral pathogens.


Asunto(s)
Autofagia , Virus ADN/inmunología , Drosophila/inmunología , Drosophila/virología , Hemocitos/inmunología , Fagocitosis , Virus ARN/inmunología , Animales , Apoptosis , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Línea Celular , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Interferencia de ARN , Virus Sindbis/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Replicación Viral
2.
Structure ; 23(9): 1665-1677, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26235031

RESUMEN

Latrophilins (LPHNs) are adhesion-like G-protein-coupled receptors implicated in attention-deficit/hyperactivity disorder. Recently, LPHN3 was found to regulate excitatory synapse number through trans interactions with fibronectin leucine-rich repeat transmembrane 3 (FLRT3). By isothermal titration calorimetry, we determined that only the olfactomedin (OLF) domain of LPHN3 is necessary for FLRT3 association. By multi-crystal native single-wavelength anomalous diffraction phasing, we determined the crystal structure of the OLF domain. This structure is a five-bladed ß propeller with a Ca(2+) ion bound in the central pore, which is capped by a mobile loop that allows the ion to exchange with the solvent. The crystal structure of the OLF/FLRT3 complex shows that LPHN3-OLF in the closed state binds with high affinity to the concave face of FLRT3-LRR with a combination of hydrophobic and charged residues. Our study provides structural and functional insights into the molecular mechanism underlying the contribution of LPHN3/FLRT3 to the development of glutamatergic synapses.


Asunto(s)
Ácido Glutámico/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/química , Receptores de Péptidos/metabolismo , Sinapsis/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA