RESUMEN
Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.
Asunto(s)
ARN Helicasas DEAD-box/genética , Ácidos Grasos/metabolismo , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Ácidos Grasos/genética , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , ARN Mensajero/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/patogenicidadRESUMEN
AIMS: Elastin is degraded during vascular ageing and its products, elastin-derived peptides (EP), are present in the human blood circulation. EP binds to the elastin receptor complex (ERC) at the cell surface, composed of elastin-binding protein (EBP), a cathepsin A and a neuraminidase 1. Some in vitro functions have clearly been attributed to this binding, but the in vivo implications for arterial diseases have never been clearly investigated. METHODS AND RESULTS: Here, we demonstrate that chronic doses of EP injected into mouse models of atherosclerosis increase atherosclerotic plaque size formation. Similar effects were observed following an injection of a VGVAPG peptide, suggesting that the ERC mediates these effects. The absence of phosphoinositide 3-kinase γ (PI3Kγ) in bone marrow-derived cells prevented EP-induced atherosclerosis development, demonstrating that PI3Kγ drive EP-induced arterial lesions. Accordingly, in vitro studies showed that PI3Kγ was required for EP-induced monocyte migration and ROS production and that this effect was dependent upon neuraminidase activity. Finally, we showed that degradation of elastic lamellae in LDLR(-/-) mice fed an atherogenic diet correlated with atherosclerotic plaque formation. At the same time, the absence of the cathepsin A-neuraminidase 1 complex in cells of the haematopoietic lineage abolished atheroma plaque size progression and decreased leucocytes infiltration, clearly demonstrating the role of this complex in atherogenesis and suggesting the involvement of endogenous EP. CONCLUSION: Altogether, this work identifies EP as an enhancer of atherogenesis and defines the Neuraminidase 1/PI3Kγ signalling pathway as a key mediator of this function in vitro and in vivo.