Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147542

RESUMEN

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Asunto(s)
Fenómenos Biológicos , Plantones , Plantones/metabolismo , Hidroponía/métodos , Raíces de Plantas/metabolismo
2.
Biomacromolecules ; 25(3): 1933-1941, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38324476

RESUMEN

Nanocellulose-based membranes have attracted intense attention in bioelectronic devices due to their low cost, flexibility, biocompatibility, degradability, and sustainability. Herein, we demonstrate a flexible ionic diode using a cross-linked bipolar membrane fabricated from positively and negatively charged cellulose nanofibrils (CNFs). The rectified current originates from the asymmetric charge distribution, which can selectively determine the direction of ion transport inside the bipolar membrane. The mechanism of rectification was demonstrated by electrochemical impedance spectroscopy with voltage biases. The rectifying behavior of this kind of ionic diode was studied by using linear sweep voltammetry to obtain current-voltage characteristics and the time dependence of the current. In addition, the performance of cross-linked CNF diodes was investigated while changing parameters such as the thickness of the bipolar membranes, the scanning voltage range, and the scanning rate. A good long-term stability due to the high density cross-linking of the diode was shown in both current-voltage characteristics and the time dependence of current.


Asunto(s)
Celulosa , Iones , Membranas
5.
ACS Appl Bio Mater ; 7(8): 5651-5661, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39077871

RESUMEN

Microbial electrochemical systems (MESs) rely on the microbes' ability to transfer charges from their anaerobic respiratory processes to electrodes through extracellular electron transfer (EET). To increase the generally low output signal in devices, advanced bioelectrical interfaces tend to augment this problem by attaching conducting nanoparticles, such as positively charged multiwalled carbon nanotubes (CNTs), to the base carbon electrode to electrostatically attract the negatively charged bacterial cell membrane. On the other hand, some reports point to the importance of the magnitude of the surface charge of functionalized single-walled CNTs (SWCNTs) as well as the size of functional groups for interaction with the cell membrane, rather than their polarity. To shed light on these phenomena, in this study, we prepared and characterized well-solubilized aqueous dispersions of SWCNTs functionalized by either positively or negatively charged cellulose-derivative polymers, as well as with positively charged or neutral small molecular surfactants, and tested the electrochemical performance of Shewanella oneidensis MR-1 in MESs in the presence of these functionalized SWCNTs. By simple injection into the MESs, the positively charged polymeric SWCNTs attached to the base carbon felt (CF) electrode, and as fluorescence microscopy revealed, allowed bacteria to attach to these structures. As a result, EET currents continuously increased over several days of monitoring, without bacterial growth in the electrolyte. Negatively charged polymeric SWCNTs also resulted in continuously increasing EET currents and a large number of bacteria on CF, although SWCNTs did not attach to CF. In contrast, SWCNTs functionalized by small-sized surfactants led to a decrease in both currents and the amount of bacteria in the solution, presumably due to the detachment of surfactants from SWCNTs and their detrimental interaction with cells. We expect our results will help researchers in designing materials for smart bioelectrical interfaces for low-scale microbial energy harvesting, sensing, and energy conversion applications.


Asunto(s)
Nanotubos de Carbono , Polisacáridos , Shewanella , Nanotubos de Carbono/química , Shewanella/metabolismo , Transporte de Electrón , Polisacáridos/química , Polisacáridos/farmacología , Ensayo de Materiales , Tamaño de la Partícula , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Electrodos
6.
J Mater Chem C Mater ; 12(15): 5339-5346, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38645749

RESUMEN

Organic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date. While PEDOT:PSS is highly conductive, and benefits from optimized protocols using secondary dopants and detergents, new p-type and n-type polymers are emerging with desirable material properties. Among these, low-oxidation potential oligomers are highly enabling for bioelectronics applications, however the polymers resulting from their polymerization lag far behind in conductivity compared with the established PEDOT:PSS. In this work we show that by careful design of the OECT geometrical characteristics, we can overcome this limitation and achieve devices that are on-par with transistors employing PEDOT:PSS. We demonstrate that the vertical architecture allows for facile electropolymerization of a family of trimers that are polymerized in very low oxidation potentials, without the need for harsh chemicals or secondary dopants. Vertical and planar OECTs are compared using various characterization methods. We show that vOECTs are superior platforms in general and propose that the vertical architecture can be expanded for the realization of OECTs for various applications.

7.
J Mater Chem B ; 12(16): 4029-4038, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38586978

RESUMEN

Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Polímeros , Hidrogeles/química , Polímeros/química , Insulina/administración & dosificación , Insulina/química , Tamaño de la Partícula , Tiofenos/química , Porosidad , Portadores de Fármacos/química , Liberación de Fármacos , Propiedades de Superficie
8.
Mater Horiz ; 11(8): 2021-2031, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38372393

RESUMEN

Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices.

9.
J Phys Chem B ; 128(27): 6581-6588, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38942741

RESUMEN

The ability of small lipophilic molecules to penetrate the blood-brain barrier through transmembrane diffusion has enabled researchers to explore new diagnostics and therapies for brain disorders. Until now, therapies targeting the brain have mainly relied on biochemical mechanisms, while electrical treatments such as deep brain stimulation often require invasive procedures. An alternative to implanting deep brain stimulation probes could involve administering small molecule precursors intravenously, capable of crossing the blood-brain barrier, and initiating the formation of conductive polymer networks in the brain through in vivo polymerization. This study examines the aggregation behavior of five water-soluble conducting polymer precursors sharing the same conjugate core but differing in side chains, using spectroscopy and various computational chemistry tools. Our findings highlight the significant impact of side chain composition on both aggregation and spectroscopic response.


Asunto(s)
Tiofenos , Tiofenos/química , Polímeros/química , Estructura Molecular , Compuestos Bicíclicos Heterocíclicos con Puentes/química
10.
Nat Commun ; 15(1): 6774, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117721

RESUMEN

Without intervention, cardiac arrhythmias pose a risk of fatality. However, timely intervention can be challenging in environments where transporting a large, heavy defibrillator is impractical, or emergency surgery to implant cardiac stimulation devices is not feasible. Here, we introduce an injectable cardiac stimulator, a syringe loaded with a nanoparticle solution comprising a conductive polymer and a monomer that, upon injection, forms a conductive structure around the heart for cardiac stimulation. Following treatment, the electrode is cleared from the body, eliminating the need for surgical extraction. The mixture adheres to the beating heart in vivo without disrupting its normal rhythm. The electrofunctionalized injectable cardiac stimulator demonstrates a tissue-compatible Young's modulus of 21 kPa and a high conductivity of 55 S/cm. The injected electrode facilitates electrocardiogram measurements, regulates heartbeat in vivo, and rectifies arrhythmia. Conductive functionality is maintained for five consecutive days, and no toxicity is observed at the organism, organ, or cellular levels.


Asunto(s)
Arritmias Cardíacas , Animales , Arritmias Cardíacas/terapia , Arritmias Cardíacas/fisiopatología , Conductividad Eléctrica , Corazón/fisiología , Nanopartículas/química , Electrocardiografía , Humanos , Ratones , Frecuencia Cardíaca , Polímeros/química , Masculino , Inyecciones , Módulo de Elasticidad , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Electrodos Implantados
11.
J Control Release ; 369: 668-683, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548064

RESUMEN

Local and long-lasting administration of potent chemotherapeutics is a promising therapeutic intervention to increase the efficiency of chemotherapy of hard-to-treat tumors such as the most lethal brain tumors, glioblastomas (GBM). However, despite high toxicity for GBM cells, potent chemotherapeutics such as gemcitabine (Gem) cannot be widely implemented as they do not efficiently cross the blood brain barrier (BBB). As an alternative method for continuous administration of Gem, we here operate freestanding iontronic pumps - "GemIPs" - equipped with a custom-synthesized ion exchange membrane (IEM) to treat a GBM tumor in an avian embryonic in vivo system. We compare GemIP treatment effects with a topical metronomic treatment and observe that a remarkable growth inhibition was only achieved with steady dosing via GemIPs. Daily topical drug administration (at the maximum dosage that was not lethal for the embryonic host organism) did not decrease tumor sizes, while both treatment regimes caused S-phase cell cycle arrest and apoptosis. We hypothesize that the pharmacodynamic effects generate different intratumoral drug concentration profiles for each technique, which causes this difference in outcome. We created a digital model of the experiment, which proposes a fast decay in the local drug concentration for the topical daily treatment, but a long-lasting high local concentration of Gem close to the tumor area with GemIPs. Continuous chemotherapy with iontronic devices opens new possibilities in cancer treatment: the long-lasting and highly local dosing of clinically available, potent chemotherapeutics to greatly enhance treatment efficiency without systemic side-effects. SIGNIFICANCE STATEMENT: Iontronic pumps (GemIPs) provide continuous and localized administration of the chemotherapeutic gemcitabine (Gem) for treating glioblastoma in vivo. By generating high and constant drug concentrations near the vascularized growing tumor, GemIPs offer an efficient and less harmful alternative to systemic administration. Continuous GemIP dosing resulted in remarkable growth inhibition, superior to daily topical Gem application at higher doses. Our digital modelling shows the advantages of iontronic chemotherapy in overcoming limitations of burst release and transient concentration profiles, and providing precise control over dosing profiles and local distribution. This technology holds promise for future implants, could revolutionize treatment strategies, and offers a new platform for studying the influence of timing and dosing dependencies of already-established drugs in the fight against hard-to-treat tumors.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Desoxicitidina , Gemcitabina , Glioblastoma , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Embrión de Pollo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Administración Metronómica
12.
Artículo en Inglés | MEDLINE | ID: mdl-38141020

RESUMEN

We demonstrate an organic electrochemical transistor (OECT) biosensor for the detection of interleukin 6 (IL6), an important biomarker associated with various pathological processes, including chronic inflammation, inflammaging, cancer, and severe COVID-19 infection. The biosensor is functionalized with oligonucleotide aptamers engineered to bind specifically IL6. We developed an easy functionalization strategy based on gold nanoparticles deposited onto a poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) gate electrode for the subsequent electrodeposition of thiolated aptamers. During this functionalization step, the reduction of sulfide bonds allows for simultaneous deposition of a blocking agent. A detection range from picomolar to nanomolar concentrations for IL6 was achieved, and the selectivity of the device was assessed against Tumor Necrosis Factor (TNF), another cytokine involved in the inflammatory processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA