Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain ; 147(10): 3562-3572, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38489591

RESUMEN

Leukodystrophies are rare genetic white matter disorders that have been regarded as mainly occurring in childhood. This perception has been altered in recent years, as a growing number of leukodystrophies have been described as having an onset in adulthood. Still, many adult patients presenting with white matter changes remain without a specific molecular diagnosis. We describe a novel adult onset leukodystrophy in 16 patients from eight families carrying one of four different stop-gain or frameshift dominant variants in the CST3 gene. Clinical and radiological features differ markedly from the previously described Icelandic cerebral amyloid angiopathy found in patients carrying p.Leu68Asn substitution in CST3. The clinical phenotype consists of recurrent episodes of hemiplegic migraine associated with transient unilateral focal deficits and slowly progressing motor symptoms and cognitive decline in mid to older adult ages. In addition, in some cases acute onset clinical deterioration led to a prolonged episode with reduced consciousness and even early death. Radiologically, pathognomonic changes are found at typical predilection sites involving the deep cerebral white matter sparing a periventricular and directly subcortical rim, the middle blade of corpus callosum, posterior limb of the internal capsule, middle cerebellar peduncles, cerebral peduncles and specifically the globus pallidus. Histopathologic characterization in two autopsy cases did not reveal angiopathy, but instead micro- to macrocystic degeneration of the white matter. Astrocytes were activated at early stages and later displayed severe degeneration and loss. In addition, despite the loss of myelin, elevated numbers of partly apoptotic oligodendrocytes were observed. A structural comparison of the variants in CST3 suggests that specific truncations of cystatin C result in an abnormal function, possibly by rendering the protein more prone to aggregation. Future studies are required to confirm the assumed effect on the protein and to determine pathophysiologic downstream events at the cellular level.


Asunto(s)
Angiopatía Amiloide Cerebral , Cistatina C , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Cistatina C/genética , Anciano , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Edad de Inicio , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Linaje
2.
Glia ; 69(10): 2362-2377, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34137074

RESUMEN

Cerebral disease manifestation occurs in about two thirds of males with X-linked adrenoleukodystrophy (CALD) and is fatally progressive if left untreated. Early histopathologic studies categorized CALD as an inflammatory demyelinating disease, which led to repeated comparisons to multiple sclerosis (MS). The aim of this study was to revisit the relationship between axonal damage and myelin loss in CALD. We applied novel immunohistochemical tools to investigate axonal damage, myelin loss and myelin repair in autopsy brain tissue of eight CALD and 25 MS patients. We found extensive and severe acute axonal damage in CALD already in prelesional areas defined by microglia loss and relative myelin preservation. In contrast to MS, we did not observe selective phagocytosis of myelin, but a concomitant decay of the entire axon-myelin unit in all CALD lesion stages. Using a novel marker protein for actively remyelinating oligodendrocytes, breast carcinoma-amplified sequence (BCAS) 1, we show that repair pathways are activated in oligodendrocytes in CALD. Regenerating cells, however, were affected by the ongoing disease process. We provide evidence that-in contrast to MS-selective myelin phagocytosis is not characteristic of CALD. On the contrary, our data indicate that acute axonal injury and permanent axonal loss are thus far underestimated features of the disease that must come into focus in our search for biomarkers and novel therapeutic approaches.


Asunto(s)
Adrenoleucodistrofia , Esclerosis Múltiple , Adrenoleucodistrofia/metabolismo , Axones/metabolismo , Humanos , Masculino , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
3.
Glia ; 67(6): 1196-1209, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30980503

RESUMEN

X-linked adrenoleukodystrophy (X-ALD) and metachromatic leukodystrophy (MLD) are two relatively common examples of hereditary demyelinating diseases caused by a dysfunction of peroxisomal or lysosomal lipid degradation. In both conditions, accumulation of nondegraded lipids leads to the destruction of cerebral white matter. Because of their high lipid content, oligodendrocytes are considered key to the pathophysiology of these leukodystrophies. However, the response to allogeneic stem cell transplantation points to the relevance of cells related to the hematopoietic lineage. In the present study, we aimed to better characterize the pathogenetic role of microglia in the above-mentioned diseases. Applying recently established microglia markers to human autopsy cases of X-ALD and MLD we were able to delineate distinct lesion stages in evolving demyelinating lesions. The immune-phenotype of microglia was altered already early in lesion evolution, and microglia loss preceded full-blown myelin degeneration both in X-ALD and MLD. DNA fragmentation indicating phagocyte death was observed in areas showing microglia loss. The morphology and dynamics of phagocyte decay differed between the diseases and between lesion stages, hinting at distinct pathways of programmed cell death. In summary, the present study shows an early and severe damage to microglia in the pathogenesis of X-ALD and MLD. This hints at a central pathophysiologic role of these cells in the diseases and provides evidence for an ongoing transfer of toxic substrates primarily enriched in myelinating cells to microglia.


Asunto(s)
Adrenoleucodistrofia/patología , Leucodistrofia Metacromática/patología , Microglía/patología , Vaina de Mielina/patología , Adolescente , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Masculino , Microglía/metabolismo , Persona de Mediana Edad , Vaina de Mielina/genética , Vaina de Mielina/metabolismo
4.
Cereb Cortex ; 28(6): 2015-2027, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28498957

RESUMEN

Although whisker-related perception is based predominantly on local, near-instantaneous coding, global, intensive coding, which integrates the vibrotactile signal over time, has also been shown to play a role given appropriate behavioral conditions. Here, we study global coding in isolation by studying head-fixed rats that identified pulsatile stimuli differing in pulse frequency but not in pulse waveforms, thus abolishing perception based on local coding. We quantified time locking and spike counts as likely variables underpinning the 2 coding schemes. Both neurometric variables contained substantial stimulus information, carried even by spikes of single barrel cortex neurons. To elucidate which type of information is actually used by the rats, we systematically compared psychometric with neurometric sensitivity based on the 2 coding schemes. Neurometric performance was calculated by using a population-encoding model incorporating the properties of our recorded neuron sample. We found that sensitivity calculated from spike counts sampled over long periods (>1 s) matched the performance of rats better than the one carried by spikes time-locked to the stimulus. We conclude that spike counts are more relevant to tactile perception when instantaneous kinematic parameters are not available.


Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Animales , Señales (Psicología) , Masculino , Estimulación Física/métodos , Ratas , Ratas Sprague-Dawley , Vibrisas/fisiología
5.
Commun Med (Lond) ; 4(1): 175, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256476

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder caused by pathogenic variants in ABCD1 resulting very long-chain fatty acids (VLCFA) accumulation in plasma and tissues. Males can present with various clinical manifestations, including adrenal insufficiency, spinal cord disease, and leukodystrophy. Female patients typically develop spinal cord disease and peripheral neuropathy. Predicting the clinical outcome of an individual patient remains impossible due to the lack of genotype-phenotype correlation and predictive biomarkers. METHODS: The availability of a large prospective cohort of well-characterized patients and associated biobank samples allowed us to investigate the relationship between lipidome and disease severity in ALD. We performed a lipidomic analysis of plasma samples from 24 healthy controls, 92 male and 65 female ALD patients. RESULTS: Here we show that VLCFA are incorporated into different lipid classes, including lysophosphatidylcholines, phosphatidylcholines, triglycerides, and sphingomyelins. Our results show a strong association between higher levels of VLCFA-containing lipids and the presence of leukodystrophy, adrenal insufficiency, and severe spinal cord disease in male ALD patients. In female ALD patients, VLCFA-lipid levels correlate with X-inactivation patterns in blood mononuclear cells, and higher levels are associated with more severe disease manifestations. Finally, hematopoietic stem cell transplantation significantly reduces, but does not normalize, plasma C26:0-lysophosphatidylcholine levels in male ALD patients. Our findings are supported by the concordance of C26:0-lysophosphatidylcholine and total VLCFA analysis with the lipidomics results. CONCLUSIONS: This study reveals the profound impact of ALD on the lipidome and provides potential biomarkers for predicting clinical outcomes in ALD patients.


X-linked adrenoleukodystrophy (ALD) affects the brain, spinal cord, and adrenal glands. ALD is caused by too many very long-chain fatty acids (VLCFAs) in the body. We don't know how ALD progresses in individual patients. We have analyzed blood samples from male and female ALD patients. We found that certain changes in fatty acid (or lipid) composition are associated with more severe symptoms. Our findings may lead to new ways to predict which symptoms are likely to change over time and to monitor the effectiveness of treatment. This research increases our understanding of ALD and may improve patient care in the future.

6.
Front Neurol ; 14: 1163107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292133

RESUMEN

CSF1 receptor-related leukoencephalopathy is a rare genetic disorder presenting with severe, adult-onset white matter dementia as one of the leading symptoms. Within the central nervous system, the affected CSF1-receptor is expressed exclusively in microglia cells. Growing evidence implicates that replacing the defective microglia with healthy donor cells through hematopoietic stem cell transplant might halt disease progression. Early initiation of that treatment is crucial to limit persistent disability. However, which patients are suitable for this treatment is not clear, and imaging biomarkers that specifically depict lasting structural damage are lacking. In this study, we report on two patients with CSF1R-related leukoencephalopathy in whom allogenic hematopoietic stem cell transplant at advanced disease stages led to clinical stabilization. We compare their disease course with that of two patients admitted in the same timeframe to our hospital, considered too late for treatment, and place our cases in context with the respective literature. We propose that the rate of clinical progression might be a suitable stratification measure for treatment amenability in patients. Furthermore, for the first time we evaluate [18F] florbetaben, a PET tracer known to bind to intact myelin, as a novel MRI-adjunct tool to image white matter damage in CSF1R-related leukoencephalopathy. In conclusion, our data add evidence for allogenic hematopoietic stem cell transplant as a promising treatment in CSF1R-related leukoencephalopathy patients with slow to moderate disease progression.

7.
EBioMedicine ; 96: 104781, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683329

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS: We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS: Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION: Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING: Austrian Science Fund, European Leukodystrophy Association.

8.
Somatosens Mot Res ; 27(4): 131-48, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20954892

RESUMEN

This paper describes experimental techniques with head-fixed, operantly conditioned rodents that allow the control of stimulus presentation and tracking of motor output at hitherto unprecedented levels of spatio-temporal precision. Experimental procedures for the surgery and behavioral training are presented. We place particular emphasis on potential pitfalls using these procedures in order to assist investigators who intend to engage in this type of experiment. We argue that head-fixed rodent models, by allowing the combination of methodologies from molecular manipulations, intracellular electrophysiology, and imaging to behavioral measurements, will be instrumental in combining insights into the functional neuronal organization at different levels of observation. Provided viable behavioral methods are implemented, model systems based on rodents will be complementary to current primate models--the latter providing highest comparability with the human brain, while the former offer hugely advanced methodologies on the lower levels of organization, for example, genetic alterations, intracellular electrophysiology, and imaging.


Asunto(s)
Conducta Animal , Cabeza , Restricción Física/instrumentación , Restricción Física/métodos , Animales , Condicionamiento Operante/fisiología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
9.
Cell Rep ; 32(11): 108132, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937123

RESUMEN

Gene and protein expression data provide useful resources for understanding brain function, but little is known about the lipid composition of the brain. Here, we perform quantitative shotgun lipidomics, which enables a cell-type-resolved assessment of the mouse brain lipid composition. We quantify around 700 lipid species and evaluate lipid features including fatty acyl chain length, hydroxylation, and number of acyl chain double bonds, thereby identifying cell-type- and brain-region-specific lipid profiles in adult mice, as well as in aged mice, in apolipoprotein-E-deficient mice, in a model of Alzheimer's disease, and in mice fed different diets. We also integrate lipid with protein expression profiles to predict lipid pathways enriched in specific cell types, such as fatty acid ß-oxidation in astrocytes and sphingolipid metabolism in microglia. This resource complements existing brain atlases of gene and protein expression and may be useful for understanding the role of lipids in brain function.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Lipidómica , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Células Cultivadas , Dieta , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/metabolismo , Proteoma/metabolismo
10.
Nat Neurosci ; 18(12): 1819-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523646

RESUMEN

Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry-based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome. Cell type-specific proteins defined as tenfold more abundant than average expression represented about a tenth of the proteome, with an overrepresentation of cell surface proteins. To demonstrate the utility of our resource, we focused on this class of proteins and identified Lsamp, an adhesion molecule of the IgLON family, as a negative regulator of myelination. Our findings provide a framework for a system-level understanding of cell-type diversity in the CNS and serves as a rich resource for analyses of brain development and function.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Neuronas/fisiología , Proteoma/genética , Animales , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Neurology ; 81(19): e146-7, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24190004

RESUMEN

A 21-year-old man presented with headache, hypotonia, hypothermia, and somnolence, deteriorating to a Glasgow Coma Scale score of 3 within days. Hormonal testing revealed panhypopituitarism. His cerebral MRI showed a gadolinium-enhancing lesion in the pituitary gland with adjacent changes to the hypothalamus, midbrain, and basal ganglia (figures 1 and 2). Therapy with prednisolone resulted in rapid improvement. Ma2 antibodies were found in the patient's serum and CSF. FDG-PET demonstrated a tumor mass in the superior mediastinum and histology revealed a mediastinal seminoma. Ma2 antibody-mediated paraneoplastic disease has to be considered as a rare differential diagnosis in patients presenting with acute panhypopituitarism.(1.)


Asunto(s)
Antígenos de Neoplasias/metabolismo , Encefalitis/diagnóstico , Hipopituitarismo/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Corteza Cerebral/patología , Encefalitis/líquido cefalorraquídeo , Encefalitis/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Escala de Coma de Glasgow , Humanos , Hipopituitarismo/diagnóstico , Imagen por Resonancia Magnética , Masculino , Hipófisis/patología , Tomografía de Emisión de Positrones , Adulto Joven
12.
Neuron ; 65(4): 530-40, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20188657

RESUMEN

Understanding the neural code underlying perception requires the mapping of physical stimulus parameters to both psychophysical decisions and neuronal responses. Here, we employed a novel psychophysical task in head-fixed rats to measure discriminability of vibrotactile whisker deflections. Rats could discriminate 90 Hz from 60 Hz pulsatile stimuli if stimulus intensity covaried with frequency. To pin down the physical parameters used by the rats to discriminate these vibrations, we manipulated stimulus amplitude to arrive at pairs of nondiscriminable stimuli. We found that vibrations matched in intensity (measured as mean absolute velocity), but differing in frequency, were no longer discriminable. Recordings of trigeminal ganglion neurons revealed that the distribution of neurometric sensitivities based on spike counts, but not interspike intervals, matched the rats' inability to discriminate intensity-matched stimuli. In conclusion, we suggest that stimulus mean absolute velocity, encoded in primary afferent spike counts, plays a prominent role for whisker-mediated perception.


Asunto(s)
Discriminación en Psicología/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Neuronas/fisiología , Umbral Sensorial/fisiología , Ganglio del Trigémino/fisiología , Vibrisas/fisiología , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Animales , Condicionamiento Operante/fisiología , Electrofisiología , Masculino , Estimulación Física , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Tacto/fisiología , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA