Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695265

RESUMEN

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Asunto(s)
Acremonium , Homeostasis , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Transducción de Señal , Acremonium/metabolismo , Acremonium/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Tolerancia a la Sal/fisiología , Brassica napus/microbiología , Brassica napus/metabolismo , Brassica napus/fisiología , Brassica napus/efectos de los fármacos , Estrés Salino/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotosíntesis
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982529

RESUMEN

The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.


Asunto(s)
Pisum sativum , Ácido Salicílico , Pisum sativum/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Semillas/metabolismo , Estrés Fisiológico , Plantas/metabolismo
3.
J Exp Bot ; 73(7): 1894-1909, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35022724

RESUMEN

Heat shock proteins 70 (HSP70s) are steadily gaining more attention in the field of plant biotic interactions. Though their regulation and activity in plants are much less well characterized than are those of their counterparts in mammals, accumulating evidence indicates that the role of HSP70-mediated defense mechanisms in plant cells is indispensable. In this review, we summarize current knowledge of HSP70 post-translational control in plants. We comment on the phytohormonal regulation of HSP70 expression and protein abundance, and identify a prominent role for cytokinin in HSP70 control. We outline HSP70s' subcellular localizations, chaperone activity, and chaperone-mediated protein degradation. We focus on the role of HSP70s in plant pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, and discuss the contribution of different HSP70 subfamilies to plant defense against pathogens.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Inmunidad de la Planta , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Mamíferos/metabolismo , Transducción de Señal
4.
Front Plant Sci ; 13: 757852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845638

RESUMEN

Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.

5.
Plants (Basel) ; 11(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365383

RESUMEN

Cadmium is one of the most toxic heavy metal pollutants, and its accumulation in the soil is harmful to agriculture. Plants have a higher cadmium tolerance than animals, and some species can be used for phytoremediation. Flax (Linum usitatissimum L.) can accumulate high amounts of cadmium, but the molecular mechanism behind its tolerance is unknown. Here, we employed four genotypes representing two fiber cultivars, an oilseed breeding line, and a transgenic line overexpressing the metallothionein domain for improved cadmium tolerance. We analyzed the proteome of suspensions and the proteome and metabolome of seedling roots in response to cadmium. We identified more than 1400 differentially abundant proteins representing putative mechanisms in cadmium tolerance, including metal-binding proteins and transporters, enzymes of flavonoid, jasmonate, polyamine, glutathione metabolism, and HSP70 proteins. Our data indicated the role of the phytohormone cytokinin in the observed responses. The metabolome profiling found that pipecolinic acid could be a part of the cadmium accumulation mechanism, and the observed accumulation of putrescine, coumaric acid, cinnamic acid, and coutaric acid confirmed the role of polyamines and flavonoids in tolerance to cadmium. In conclusion, our data provide new insight into cadmium tolerance and prospective targets for improving cadmium tolerance in other plants.

6.
Front Plant Sci ; 11: 590337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250914

RESUMEN

Cytokinin is a phytohormone involved in the regulation of diverse developmental and physiological processes in plants. Its potential in biotechnology and for development of higher-yield and more resilient plants has been recognized, yet the molecular mechanisms behind its action are far from understood. In this report, the roots of barley seedlings were explored as a new source to reveal as yet unknown cytokinin-responsive proteins for crop improvement. Here we found significant differences reproducibly observed for 178 proteins, for which some of the revealed cytokinin-responsive pathways were confirmed in metabolome analysis, including alterations phenylpropanoid pathway, amino acid biosynthesis and ROS metabolism. Bioinformatics analysis indicated a significant overlap between cytokinin response and response to abiotic stress. This was confirmed by comparing proteome and metabolome profiles in response to drought, salinity or a period of temperature stress. The results illustrate complex abiotic stress response in the early development of model crop plant and confirm an extensive crosstalk between plant hormone cytokinin and response to temperature stimuli, water availability or salinity stress.

7.
Plants (Basel) ; 9(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202776

RESUMEN

Cytokinins are multifaceted plant hormones that play crucial roles in plant interactions with the environment. Modulations in cytokinin metabolism and signaling have been successfully used for elevating plant tolerance to biotic and abiotic stressors. Here, we analyzed Arabidopsis thaliana response to INhibitor of CYtokinin DEgradation (INCYDE), a potent inhibitor of cytokinin dehydrogenase. We found that at low nanomolar concentration, the effect of INCYCE on seedling growth and development was not significantly different from that of trans-Zeatin treatment. However, an alteration in the spatial distribution of cytokinin signaling was found at low micromolar concentrations, and proteomics analysis revealed a significant impact on the molecular level. An in-depth proteome analysis of an early (24 h) response and a dose-dependent response after 168 h highlighted the effects on primary and secondary metabolism, including alterations in ribosomal subunits, RNA metabolism, modulations of proteins associated with chromatin, and the flavonoid and phenylpropanoid biosynthetic pathway. The observed attenuation in stress-response mechanisms, including abscisic acid signaling and the metabolism of jasmonates, could explain previously reported positive effects of INCYDE under mild stress conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA