Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 158(4): 960-979, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991113

RESUMEN

In Parkinson's disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of H2 O2 and reduced glutathione levels. In addition, TH-HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4-dihydroxyphenylacetaldehyde and 5-S-cysteinyl-dopamine and were more susceptible than wild-type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.


Asunto(s)
Anfetamina/farmacología , Catecolaminas/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Estrés Oxidativo , Tirosina 3-Monooxigenasa/metabolismo , Ácido 3,4-Dihidroxifenilacético/análogos & derivados , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Dopamina/análogos & derivados , Dopamina/metabolismo , Femenino , Dosificación de Gen , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Tirosina 3-Monooxigenasa/genética
2.
Synapse ; 69(12): 607-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26340045

RESUMEN

Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Etanol/farmacología , Núcleo Accumbens/fisiología , Animales , Ratones , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
3.
J Neurosci ; 33(46): 18125-33, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227722

RESUMEN

Several studies have reported the coupling of dopamine signaling to phospholipase C ß (PLCß) both in vitro and in vivo. However, the precise physiological relevance of this signaling pathway in mediating dopamine behaviors is still unclear. Here we report that stimulation of dopamine receptor signaling in vivo with systemic administration of apomorphine, amphetamine, and cocaine leads to increased production of inositol triphosphate (IP3) in the mouse striatum. Using selective antagonists and dopamine D1 and D2 receptor knock-out animals, we show that the production of IP3 is mediated by the D1 receptor, but not the D2 receptor. A selective blocker of PLCß, U73122, was used to assess the physiological relevance of D1-mediated IP3 production. We show that U73122 inhibits the locomotor-stimulating effects of apomorphine, amphetamine, cocaine, and SKF81297. Furthermore, U73122 also suppresses the spontaneous hyperactivity exhibited by dopamine transporter knock-out mice. Importantly, the effects of U73122 are selective to dopamine-mediated hyperactivity, as this compound does not affect hyperactivity induced by the glutamate NMDA receptor antagonist MK801. Finally, we present evidence showing that an imbalance of D1- and D2-mediated signaling following U73122 treatment modifies the locomotor output of animals from horizontal locomotor activity to vertical activity, further highlighting the importance of the PLCß pathway in the regulation of forward locomotion via dopamine receptors.


Asunto(s)
Actividad Motora/fisiología , Fosfolipasa C beta/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/fisiología
4.
J Vis Exp ; (91): e51896, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25226023

RESUMEN

Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.


Asunto(s)
Centrifugación por Gradiente de Densidad/métodos , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Membranas Sinápticas/química , Animales , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Sacarosa/química , Membranas Sinápticas/metabolismo , Sinaptosomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA