Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanomedicine ; 40: 102481, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748963

RESUMEN

Tolerance induction is central to the suppression of autoimmunity. Here, we engineered the preferential uptake of nano-conjugated autoantigens by spleen-resident macrophages to re-introduce self-tolerance and suppress autoimmunity. The brain autoantigen, myelin oligodendrocyte glycoprotein (MOG), was conjugated to 200 or 500 nm silica nanoparticles (SNP) and delivered to the spleen and liver-resident macrophages of experimental autoimmune encephalomyelitis (EAE) mice, used as a model of multiple sclerosis. MOG-SNP conjugates significantly reduced signs of EAE at a very low dose (50 µg) compared to the higher dose (>800 µg) of free-MOG. This was associated with reduced proliferation of splenocytes and pro-inflammatory cytokines secretion, decreased spinal cord inflammation, demyelination and axonal damage. Notably, biodegradable porous SNP showed an enhanced disease suppression assisted by elevated levels of regulatory T cells and programmed-death ligands (PD-L1/2) in splenic and lymph node cells. Our results demonstrate that targeting nano-conjugated autoantigens to tissue-resident macrophages in lymphoid organs can effectively suppress autoimmunity.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Nanopartículas , Animales , Autoinmunidad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 115(39): 9773-9778, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30194232

RESUMEN

The anti-CD20 antibody ocrelizumab, approved for treatment of multiple sclerosis, leads to rapid elimination of B cells from the blood. The extent of B cell depletion and kinetics of their recovery in different immune compartments is largely unknown. Here, we studied how anti-CD20 treatment influences B cells in bone marrow, blood, lymph nodes, and spleen in models of experimental autoimmune encephalomyelitis (EAE). Anti-CD20 reduced mature B cells in all compartments examined, although a subpopulation of antigen-experienced B cells persisted in splenic follicles. Upon treatment cessation, CD20+ B cells simultaneously repopulated in bone marrow and spleen before their reappearance in blood. In EAE induced by native myelin oligodendrocyte glycoprotein (MOG), a model in which B cells are activated, B cell recovery was characterized by expansion of mature, differentiated cells containing a high frequency of myelin-reactive B cells with restricted B cell receptor gene diversity. Those B cells served as efficient antigen-presenting cells (APCs) for activation of myelin-specific T cells. In MOG peptide-induced EAE, a purely T cell-mediated model that does not require B cells, in contrast, reconstituting B cells exhibited a naive phenotype without efficient APC capacity. Our results demonstrate that distinct subpopulations of B cells differ in their sensitivity to anti-CD20 treatment and suggest that differentiated B cells persisting in secondary lymphoid organs contribute to the recovering B cell pool.


Asunto(s)
Antígenos CD20/inmunología , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Células de la Médula Ósea/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/inmunología , Bazo/citología , Bazo/inmunología
3.
Diabetologia ; 63(9): 1808-1821, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32607749

RESUMEN

AIMS/HYPOTHESIS: Low-dose IL-2 (ld-IL2) selectively activates and expands regulatory T cells (Tregs) and thus has the potential to skew the regulatory/effector T (Treg/Teff) cell balance towards improved regulation. We investigated which low doses of IL-2 would more effectively and safely activate Tregs during a 1 year treatment in children with recently diagnosed type 1 diabetes. METHODS: Dose Finding Study of IL-2 at Ultra-low Dose in Children With Recently Diagnosed Type 1 Diabetes (DF-IL2-Child) was a multicentre, double-blinded, placebo-controlled, dose-finding Phase I/II clinical trial conducted in four centres at university hospitals in France: 24 children (7-14 years old) with type 1 diabetes diagnosed within the previous 3 months were randomly assigned 1:1:1:1 to treatment by a centralised randomisation system, leading to a 7/5/6/6 patient distribution of placebo or IL-2 at doses of 0.125, 0.250 or 0.500 million international units (MIU)/m2, given daily for a 5 day course and then fortnightly for 1 year. A study number was attributed to patients by an investigator unaware of the randomisation list and all participants as well as investigators and staff involved in the study conduct and analyses were blinded to treatments. The primary outcome was change in Tregs, expressed as a percentage of CD4+ T cells at day 5. It pre-specified that a ≥60% increase in Tregs from baseline would identify Treg high responders. RESULTS: There were no serious adverse events. Non-serious adverse events (NSAEs) were transient and mild to moderate. In treated patients vs placebo, the commonest NSAE was injection site reaction (37.9% vs 3.4%), whereas other NSAEs were at the same level (23.3% vs 19.2%). ld-IL2 induced a dose-dependent increase in the mean proportion of Tregs, from 23.9% (95% CI -11.8, 59.6) at the lowest to 77.2% (44.7, 109.8) at the highest dose, which was significantly different from placebo for all dose groups. However, the individual Treg responses to IL-2 were variable and fluctuated over time. Seven patients, all among those treated with the 0.250 and 0.500 MIU m-2 day-1 doses, were Treg high responders. At baseline, they had lower Treg proportions in CD4+ cells than Treg low responders, and serum soluble IL-2 receptor α (sIL-2RA) and vascular endothelial growth factor receptor 2 (VEGFR2) levels predicted the Treg response after the 5 day course. There was no significant change in glycaemic control in any of the dose groups compared with placebo. However, there was an improved maintenance of induced C-peptide production at 1 year in the seven Treg high responders as compared with low responders. CONCLUSIONS/INTERPRETATION: The safety profile at all doses, the dose-dependent effects on Tregs and the observed variability of the Treg response to ld-IL2 in children with newly diagnosed type 1 diabetes call for use of the highest dose in future developments. The better preservation of insulin production in Treg high responders supports the potential of Tregs in regulating autoimmunity in type 1 diabetes, and warrants pursuing the investigation of ld-IL2 for its treatment and prevention. TRIAL REGISTRATION: ClinicalTrials.gov NCT01862120. FUNDING: Assistance Publique-Hôpitaux de Paris, Investissements d'Avenir programme (ANR-11-IDEX-0004-02, LabEx Transimmunom and ANR-16-RHUS-0001, RHU iMAP) and European Research Council Advanced Grant (FP7-IDEAS-ERC-322856, TRiPoD).


Asunto(s)
Autoinmunidad/inmunología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Secreción de Insulina , Interleucina-2/administración & dosificación , Linfocitos T Reguladores/inmunología , Adolescente , Recuento de Linfocito CD4 , Niño , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Método Doble Ciego , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Masculino
4.
Ann Rheum Dis ; 78(2): 209-217, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30472651

RESUMEN

OBJECTIVE: Regulatory T cells (Tregs) prevent autoimmunity and control inflammation. Consequently, any autoimmune or inflammatory disease reveals a Treg insufficiency. As low-dose interleukin-2 (ld-IL2) expands and activates Tregs, it has a broad therapeutic potential. AIM: We aimed to assess this potential and select diseases for further clinical development by cross-investigating the effects of ld-IL2 in a single clinical trial treating patients with 1 of 11 autoimmune diseases. METHODS: We performed a prospective, open-label, phase I-IIa study in 46 patients with a mild to moderate form of either rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, psoriasis, Behcet's disease, granulomatosis with polyangiitis, Takayasu's disease, Crohn's disease, ulcerative colitis, autoimmune hepatitis and sclerosing cholangitis. They all received ld-IL2 (1 million IU/day) for 5 days, followed by fortnightly injections for 6 months. Patients were evaluated by deep immunomonitoring and clinical evaluation. RESULTS: ld-IL2 was well tolerated whatever the disease and the concomitant treatments. Thorough supervised and unsupervised immunomonitoring demonstrated specific Treg expansion and activation in all patients, without effector T cell activation. Indication of potential clinical efficacy was observed. CONCLUSION: The dose of IL-2 and treatment scheme used selectively activate and expand Tregs and are safe across different diseases and concomitant treatments. This and preliminary indications of clinical efficacy should licence the launch of phase II efficacy trial of ld-IL2 in various autoimmune and inflammatory diseases. TRIAL REGISTRATION NUMBER: NCT01988506.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Factores Inmunológicos/administración & dosificación , Interleucina-2/administración & dosificación , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Enfermedades Autoinmunes/inmunología , Femenino , Humanos , Factores Inmunológicos/inmunología , Interleucina-2/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Linfocitos T Reguladores/inmunología , Resultado del Tratamiento
5.
Immunol Cell Biol ; 96(4): 347-357, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377354

RESUMEN

Mesenchymal stromal cells or stem cells (MSCs) have been shown to participate in tissue repair and are immunomodulatory in neuropathological settings. Given this, their potential use in developing a new generation of personalized therapies for autoimmune and inflammatory diseases of the central nervous system (CNS) will be explored. To effectively exert these effector functions, MSCs must first gain entry into damaged neural tissues, a process that has been demonstrated to be a limiting factor in their therapeutic efficacy. In this review, we discuss approaches to maximize the therapeutic efficacy of MSCs by altering their intrinsic trafficking programs to effectively enter neuropathological sites. To this end, we explore the significant role of chemokine receptors and adhesion molecules in directing cellular traffic to the inflamed CNS and the capacity of MSCs to adopt these molecular mechanisms to gain entry to this site. We postulate that understanding and exploiting these migratory mechanisms may be key to the development of cell-based therapies tailored to respond to the migratory cues unique to the nature and stage of progression of individual CNS disorders.


Asunto(s)
Células Madre Adultas/trasplante , Autoinmunidad , Encéfalo/patología , Inflamación/inmunología , Inflamación/terapia , Células Madre Mesenquimatosas/citología , Humanos , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia
6.
Pflugers Arch ; 469(10): 1387-1399, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28567665

RESUMEN

In adulthood, an induced nephron-specific deficiency of αENaC (Scnn1a) resulted in pseudohypoaldosteronism type 1 (PHA-1) with sodium loss, hyperkalemia, and metabolic acidosis that is rescued through high-sodium/low-potassium (HNa+/LK+) diet. In the present study, we addressed whether renal ßENaC expression is required for sodium and potassium balance or can be compensated by remaining (α and γ) ENaC subunits using adult nephron-specific knockout (Scnn1bPax8/LC1) mice. Upon induction, these mice present a severe PHA-1 phenotype with weight loss, hyperkalemia, and dehydration, but unlike the Scnn1aPax8/LC1 mice without persistent salt wasting. This is followed by a marked downregulation of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and Na+/Cl- co-transporter (NCC) protein expression and activity. Most of the experimental Scnn1bPax8/LC1 mice survived with a HNa+/LK+ diet that partly normalized NCC phosphorylation, but not total NCC expression. Since salt loss was minor, we applied a standard-sodium/LK+ diet that efficiently rescued these mice resulting in normokalemia and normalization of NCC phosphorylation, but not total NCC expression. A further switch to LNa+/standard-K+ diet induced again a severe PHA-1-like phenotype, but with only transient salt wasting indicating that low-K+ intake is critical to decrease hyperkalemia in a NCC-dependent manner. In conclusion, while the ßENaC subunit plays only a minor role in sodium balance, severe hyperkalemia results in downregulation of NCC expression and activity. Our data demonstrate the importance to primarily correct the hyperkalemia with a low-potassium diet that normalizes NCC activity.


Asunto(s)
Dieta Hiposódica , Canales Epiteliales de Sodio/metabolismo , Hiperpotasemia/metabolismo , Potasio/metabolismo , Animales , Riñón/metabolismo , Ratones Transgénicos , Nefronas/metabolismo , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo , Sodio/metabolismo
7.
Ann Neurol ; 77(5): 902-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25712734

RESUMEN

Natalizumab, which binds very late antigen-4 (VLA-4), is a potent therapy for multiple sclerosis (MS). Studies have focused primarily upon its capacity to interfere with T-cell migration into the central nervous system (CNS). B cells are important in MS pathogenesis and express high levels of VLA-4. Here, we report that the selective inhibition of VLA-4 expression on B cells impedes CNS accumulation of B cells, and recruitment of Th17 cells and macrophages, and reduces susceptibility to experimental autoimmune encephalomyelitis. These results underscore the importance of B-cell VLA-4 expression in the pathogenesis of CNS autoimmunity and provide insight regarding mechanisms that may contribute to the benefit of natalizumab in MS, as well as candidate therapeutics that selectively target B cells.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Integrina alfa4beta1/deficiencia , Animales , Linfocitos B/metabolismo , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Th17/inmunología , Células Th17/metabolismo
8.
Acta Neuropathol ; 132(1): 43-58, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27022743

RESUMEN

In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.


Asunto(s)
Autoanticuerpos/inmunología , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/antagonistas & inhibidores , Glicoproteína Mielina-Oligodendrócito/inmunología , Neuromielitis Óptica/inmunología , Animales , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Receptores de IgG/deficiencia , Receptores de IgG/genética , Linfocitos T/inmunología
9.
J Immunol ; 192(6): 2593-601, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532581

RESUMEN

The various mechanisms that have been described for immune tolerance govern our ability to control self-reactivity and minimize autoimmunity. However, the capacity to genetically manipulate the immune system provides a powerful avenue to supplement this natural tolerance in an Ag-specific manner. We have previously shown in the mouse model of experimental autoimmune encephalomyelitis that transfer of bone marrow (BM) transduced with retrovirus encoding myelin oligodendrocyte glycoprotein (MOG) promotes disease resistance and CD4(+) T cell deletion within the thymus. However, the consequence of this strategy on B cell tolerance is not known. Using BM from IgH(MOG) mice that develop MOG-specific B cell receptors, we generated mixed chimeras together with BM-encoding MOG. In these animals, the development of MOG-specific B cells was abrogated, resulting in a lack of MOG-specific B cells in all B cell compartments examined. This finding adds a further dimension to our understanding of the mechanisms of tolerance that are associated with this gene therapy approach to treating autoimmunity and may have important implications for Ab-mediated autoimmune disorders.


Asunto(s)
Linfocitos B/inmunología , Trasplante de Médula Ósea/métodos , Supresión Clonal/inmunología , Terapia Genética/métodos , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Linfocitos B/metabolismo , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Femenino , Citometría de Flujo , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Bazo/citología , Bazo/inmunología , Bazo/metabolismo , Quimera por Trasplante/sangre , Quimera por Trasplante/inmunología
10.
J Neuroinflammation ; 12: 112, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26036872

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). In recent years, it has been found that cells such as human amnion epithelial cells (hAECs) have the ability to modulate immune responses in vitro and in vivo and can differentiate into multiple cell lineages. Accordingly, we investigated the immunoregulatory effects of hAECs as a potential therapy in an MS-like disease, EAE (experimental autoimmune encephalomyelitis), in mice. METHODS: Using flow cytometry, the phenotypic profile of hAECs from different donors was assessed. The immunomodulatory properties of hAECs were examined in vitro using antigen-specific and one-way mixed lymphocyte proliferation assays. The therapeutic efficacy of hAECs was examined using a relapsing-remitting model of EAE in NOD/Lt mice. T cell responsiveness, cytokine secretion, T regulatory, and T helper cell phenotype were determined in the peripheral lymphoid organs and CNS of these animals. RESULTS: In vitro, hAECs suppressed both specific and non-specific T cell proliferation, decreased pro-inflammatory cytokine production, and inhibited the activation of stimulated T cells. Furthermore, T cells retained their naïve phenotype when co-cultured with hAECs. In vivo studies revealed that hAECs not only suppressed the development of EAE but also prevented disease relapse in these mice. T cell responses and production of the pro-inflammatory cytokine interleukin (IL)-17A were reduced in hAEC-treated mice, and this was coupled with a significant increase in the number of peripheral T regulatory cells and naïve CD4+ T cells. Furthermore, increased proportions of Th2 cells in the peripheral lymphoid organs and within the CNS were observed. CONCLUSION: The therapeutic effect of hAECs is in part mediated by inducing an anti-inflammatory response within the CNS, demonstrating that hAECs hold promise for the treatment of autoimmune diseases like MS.


Asunto(s)
Amnios/citología , Amnios/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Células Epiteliales/citología , Células Epiteliales/inmunología , Terapia de Inmunosupresión/métodos , Amnios/trasplante , Animales , Proliferación Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Cultivadas , Sistema Nervioso Central/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Células Epiteliales/trasplante , Femenino , Humanos , Técnicas In Vitro , Tejido Linfoide/patología , Ratones , Ratones Endogámicos NOD , Fenotipo , Linfocitos T/patología , Linfocitos T Reguladores/patología
11.
J Neuroinflammation ; 12: 17, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623142

RESUMEN

BACKGROUND: Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process. METHODS: Transgenic mice (C57Bl/6 J Cx 3 cr1 (GFP/+) , C57Bl/6 N CD11c-eYFP, and C57Bl/6 J LysM-eGFP) were used to visualize the dynamic changes of myeloid-derived cells, putative dendritic cells and neutrophils during EAU. Transgenic mice were monitored with multi-modal fundus imaging camera over five time points following disease induction with the retinal auto-antigen, interphotoreceptor retinoid binding protein (IRBP1-20). Disease severity was quantified with both clinical and histopathological grading. RESULTS: In the normal C57Bl/6 J Cx 3 cr1 (GFP/+) mouse Cx3cr1-expressing microglia were evenly distributed in the retina. In C57Bl/6 N CD11c-eYFP mice clusters of CD11c-expressing cells were noted in the retina and in C57Bl/6 J LysM-eGFP mice very low numbers of LysM-expressing neutrophils were observed in the fundus. Following immunization with IRBP1-20, fundus examination revealed accumulations of Cx3cr1-GFP(+) myeloid cells, CD11c-eYFP(+) cells and LysM-eGFP(+) myelomonocytic cells around the optic nerve head and along retinal vessels as early as day 14 post-immunization. CD11c-eYFP(+) cells appear to resolve marginally earlier (day 21 post-immunization) than Cx3cr1-GFP(+) and LysM-eGFP(+) cells. The clinical grading of EAU in transgenic mice correlated closely with histopathological grading. CONCLUSIONS: These results illustrate that in vivo fundus imaging of transgenic reporter mice allows direct visualization of various exogenously and endogenously derived leukocyte types during EAU progression. This approach acts as a valuable adjunct to other methods of studying the clinical course of EAU.


Asunto(s)
Enfermedades Autoinmunes , Modelos Animales de Enfermedad , Imagen Multimodal , Retinitis/patología , Uveítis/complicaciones , Uveítis/genética , Uveítis/patología , Animales , Antígeno CD11c/genética , Receptor 1 de Quimiocinas CX3C , Progresión de la Enfermedad , Proteínas del Ojo/toxicidad , Adyuvante de Freund/toxicidad , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Muramidasa/genética , Fragmentos de Péptidos/toxicidad , Receptores de Quimiocina/genética , Vasos Retinianos , Retinitis/inducido químicamente , Retinitis/complicaciones , Retinitis/genética , Proteínas de Unión al Retinol/toxicidad , Factores de Tiempo , Uveítis/inducido químicamente
12.
Biol Chem ; 396(8): 923-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25719317

RESUMEN

Induced pluripotent stem cell (iPSC)-derived neurospheres, which consist mainly of neural progenitors, are considered to be a good source of neural cells for transplantation in regenerative medicine. In this study, we have used lithium chloride, which is known to be a neuroprotective agent, in an iPSC-derived neurosphere model, and examined both the formation rate and size of the neurospheres as well as the proliferative and apoptotic status of their contents. Our results showed that lithium enhanced the formation and the sizes of the iPSC-derived neurospheres, increased the number of Ki67-positive proliferating cells, but reduced the number of the TUNEL-positive apoptotic cells. This increased number of Ki67 proliferating cells was secondary to the decreased apoptosis and not to the stimulation of cell cycle entry, as the expression of the proliferation marker cyclin D1 mRNA did not change after lithium treatment. Altogether, we suggest that lithium enhances the survival of neural progenitors and thus the quality of the iPSC-derived neurospheres, which may strengthen the prospect of using lithium-treated pluripotent cells and their derivatives in a clinical setting.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Cloruro de Litio/farmacología , Neuronas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Cultivadas , Ciclina D1/genética , Humanos , Etiquetado Corte-Fin in Situ , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética
13.
J Proteome Res ; 13(8): 3655-70, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24933266

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a murine model of multiple sclerosis, a chronic neurodegenerative and inflammatory autoimmune condition of the central nervous system (CNS). Pathology is driven by the infiltration of autoreactive CD4(+) lymphocytes into the CNS, where they attack neuronal sheaths causing ascending paralysis. We used an isotope-coded protein labeling approach to investigate the proteome of CD4(+) cells isolated from the spinal cord and brain of mice at various stages of EAE progression in two EAE disease models: PLP139-151-induced relapsing-remitting EAE and MOG35-55-induced chronic EAE, which emulate the two forms of human multiple sclerosis. A total of 1120 proteins were quantified across disease onset, peak-disease, and remission phases of disease, and of these 13 up-regulated proteins of interest were identified with functions relating to the regulation of inflammation, leukocyte adhesion and migration, tissue repair, and the regulation of transcription/translation. Proteins implicated in processes such as inflammation (S100A4 and S100A9) and tissue repair (annexin A1), which represent key events during EAE progression, were validated by quantitative PCR. This is the first targeted analysis of autoreactive cells purified from the CNS during EAE, highlighting fundamental CD4(+) cell-driven processes that occur during the initiation of relapse and remission stages of disease.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Sistema Nervioso Central/citología , Encefalomielitis Autoinmune Experimental/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Adhesión Celular/genética , Movimiento Celular/genética , Sistema Nervioso Central/metabolismo , Cromatografía Líquida de Alta Presión , Femenino , Citometría de Flujo , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Toxina del Pertussis , Proteoma/genética
14.
Am J Physiol Gastrointest Liver Physiol ; 307(11): G1115-29, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301186

RESUMEN

Damage to the enteric nervous system (ENS) associated with intestinal inflammation may underlie persistent alterations to gut functions, suggesting that enteric neurons are viable targets for novel therapies. Mesenchymal stem cells (MSCs) offer therapeutic benefits for attenuation of neurodegenerative diseases by homing to areas of inflammation and exhibiting neuroprotective, anti-inflammatory, and immunomodulatory properties. In culture, MSCs release soluble bioactive factors promoting neuronal survival and suppressing inflammation suggesting that MSC-conditioned medium (CM) provides essential factors to repair damaged tissues. We investigated whether MSC and CM treatments administered by enema attenuate 2,4,6-trinitrobenzene-sulfonic acid (TNBS)-induced enteric neuropathy and motility dysfunction in the guinea pig colon. Guinea pigs were randomly assigned to experimental groups and received a single application of TNBS (30 mg/kg) followed by 1 × 10(6) human bone marrow-derived MSCs, 300 µl CM, or 300 µl unconditioned medium 3 h later. After 7 days, the effect of these treatments on enteric neurons was assessed by histological, immunohistochemical, and motility analyses. MSC and CM treatments prevented inflammation-associated weight loss and gross morphological damage in the colon; decreased the quantity of immune infiltrate in the colonic wall (P < 0.01) and at the level of the myenteric ganglia (P < 0.001); prevented loss of myenteric neurons (P < 0.05) and damage to nerve processes, changes in ChAT, and nNOS immunoreactivity (P < 0.05); and alleviated inflammation-induced colonic dysmotility (contraction speed; P < 0.001, contractions/min; P < 0.05). These results provide strong evidence that both MSC and CM treatments can effectively prevent damage to the ENS and alleviate gut dysfunction caused by TNBS-induced colitis.


Asunto(s)
Colitis/inducido químicamente , Colitis/prevención & control , Sistema Nervioso Entérico/patología , Trasplante de Células Madre Mesenquimatosas , Enfermedades del Sistema Nervioso Periférico/prevención & control , Ácido Trinitrobencenosulfónico , Animales , Movimiento Celular/fisiología , Colitis/patología , Colon/patología , Medios de Cultivo Condicionados , Femenino , Motilidad Gastrointestinal , Humanos , Masculino , Ratones , Pérdida de Peso/efectos de los fármacos
16.
Microsc Microanal ; 20(6): 1869-75, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25335881

RESUMEN

We compared the characteristics of neural cells derived from induced pluripotent stem (iPS) cells from a patient with multiple sclerosis versus neurally differentiated control iPS cells of a healthy individual. The iPS cells were differentiated toward the oligodendrocyte lineage using a four-step protocol established for the differentiation of embryonic stem cells. The resulting cell population was immunostained on day 112 of differentiation for the presence of oligodendrocytes and analyzed by transmission electron microscopy (TEM). Both patient and control samples resembled a mixed population of neural cells rather than oligodendroglia of high purity, including neural stem cell-like cells and possibly oligodendrocytes demonstrable by TEM.


Asunto(s)
Células Madre Pluripotentes Inducidas/ultraestructura , Esclerosis Múltiple , Células-Madre Neurales/ultraestructura , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Microscopía Electrónica de Transmisión , Células-Madre Neurales/fisiología
17.
Mol Genet Genomic Med ; 12(1): e2302, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37970725

RESUMEN

BACKGROUND: Major sickle cell syndromes are the most common hemoglobinopathy in the world. The sickle cell patients are subjected to several factors causing inflammation, and the genetic identification of each individual allows to focus the possibility of allelic variations influence of a specific gene and then the polymorphism. This study aims at determining the distribution of HP gene (OMIM#140100) and their involvement on hematological parameters and the iron profile in the sickle cell patients presenting an inflammation condition during major sickle cell syndromes in Cameroun. METHODS: A case-control analytical study has been conducted over a period of 6 months. Cases consisting of sickle cell patients in a situation of inflammation and control of non-inflamed sickle cell patients. The patients presenting major sickle cell syndromes, interned and/or followed at the Hematology Department of the Regional Hospital of Bafoussam and the Central Hospital of Yaoundé have been recruited. HP genotyping was carried out at the Laboratory for Public Health Research Biotechnologies (LAPHER-Biotech) in Yaoundé using allele-specific PCR. Also, inflammatory, hematological parameters and martial assessment were explored by standard methods. Statistical analysis of the data was performed using the statistical tool R version 4.1.1. The comparison of proportions of alleles was made with the chi-square test, and the Wilcoxon test was used to compare the median between different groups using the statistical tool R version 4.1.1. RESULTS: We analyzed the samples of 149 patients. The HP polymorphism describes a significant frequency of the "1F" allele (69.8%) followed by the "2" allele (46.31%). In addition, 80 patients (53.69%), 48 (32.21%), and 21 (14.09%) presented the genotype HP 1-1, HP 2-1, and HP 2-2, respectively. And eighty-one percent (81%) patients with genotype HP 2-2 showed a significant higher relative frequency of thrombocytosis compared with the genotype HP 1-1 and HP 2-1, respectively (51.2% and 68.8%, p = 0.087). The proportion of inflammation in the HP 2-2 group was higher (57.1%) compared with the other groups (respectively 42.5% and 35.4% in the HP 1-1 and HP 2-1 groups). Furthermore, the median CRP was significantly higher in the HP 2-2 group compared with the other groups (p = 0.039). Moreover, the entire population of the HP 2-2 group showed an elevation of ferritin and IL6 unlike the HP 1-1 and HP 2-1 groups. CONCLUSION: This study demonstrates a higher frequency of genotype HP 1-1 followed by the HP 2-2 genotype in patients with major sickle cell syndromes. However, a larger proportion of patients with genotype HP 2-2 are associated with hematological profile disorders, inflammation, and dysregulation of iron metabolism. Then, the haptoglobin polymorphism contributes to the severity of major sickle cell syndromes.


Asunto(s)
Anemia de Células Falciformes , Hierro , Humanos , Hierro/análisis , Hierro/metabolismo , Haptoglobinas/genética , Camerún , Polimorfismo Genético , Inflamación/genética , Anemia de Células Falciformes/genética
18.
Brain Behav Immun ; 30: 103-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23369732

RESUMEN

Interleukin (IL)-10 is an important immunoregulatory cytokine shown to impact inflammatory processes as manifested in patients with multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). Several lines of evidence indicate that the effectiveness of IL-10-based therapies may be dependent on the timing and mode of delivery. In the present study we engineered the expression of IL-10 in human adipose-derived mesenchymal stem cells (Adi-IL-10-MSCs) and transplanted these cells early in the disease course to mice with EAE. Adi-IL-10-MSCs transplanted via the intraperitoneal route prevented or delayed the development of EAE. This protective effect was associated with several anti-inflammatory response mechanisms, including a reduction in peripheral T-cell proliferative responses, a decrease in pro-inflammatory cytokine secretion as well as a preferential inhibition of Th17-mediated neuroinflammation. In vitro analyses revealed that Adi-IL-10-MSCs inhibited the phenotypic maturation, cytokine production and antigen presenting capacity of bone marrow-derived myeloid dendritic cells, suggesting that the mechanism of action may involve an indirect effect on pathogenic T-cells via the modulation of antigen presenting cell function. Collectively, these results suggest that early intervention with gene modified Adi-MSCs may be beneficial for the treatment of autoimmune diseases such as MS.


Asunto(s)
Adipocitos/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Interleucina-10/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adipocitos/trasplante , Animales , Autoinmunidad/inmunología , Diferenciación Celular/inmunología , Proliferación Celular , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Linfocitos T/inmunología
19.
Brain ; 135(Pt 6): 1794-818, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22544872

RESUMEN

Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoimmune encephalomyelitis; however, the mechanism by which this occurs is unclear. We now show that the collapsin response mediator protein 2 (CRMP-2), an important tubulin-associated protein that regulates axonal growth, is phosphorylated and hence inhibited during the progression of experimental autoimmune encephalomyelitis in degenerating axons. The phosphorylated form of CRMP-2 (pThr555CRMP-2) is localized to spinal cord neurons and axons in chronic-active multiple sclerosis lesions. Specifically, pThr555CRMP-2 is implicated to be Nogo-66 receptor 1 (NgR1)-dependent, since myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced NgR1 knock-out (ngr1(-)(/)(-)) mice display a reduced experimental autoimmune encephalomyelitis disease progression, without a deregulation of ngr1(-)(/)(-) MOG(35-55)-reactive lymphocytes and monocytes. The limitation of axonal degeneration/loss in experimental autoimmune encephalomyelitis-induced ngr1(-)(/)(-) mice is associated with lower levels of pThr555CRMP-2 in the spinal cord and optic nerve during experimental autoimmune encephalomyelitis. Furthermore, transduction of retinal ganglion cells with an adeno-associated viral vector encoding a site-specific mutant T555ACRMP-2 construct, limits optic nerve axonal degeneration occurring at peak stage of experimental autoimmune encephalomyelitis. Therapeutic administration of the anti-Nogo(623-640) antibody during the course of experimental autoimmune encephalomyelitis, associated with an improved clinical outcome, is demonstrated to abrogate the protein levels of pThr555CRMP-2 in the spinal cord and improve pathological outcome. We conclude that phosphorylation of CRMP-2 may be downstream of NgR1 activation and play a role in axonal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Blockade of Nogo-A/NgR1 interaction may serve as a viable therapeutic target in multiple sclerosis.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/complicaciones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Esclerosis Múltiple/patología , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adulto , Análisis de Varianza , Animales , Anticuerpos/uso terapéutico , Axones/patología , Axones/ultraestructura , Complejo CD3/metabolismo , Línea Celular Tumoral , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica/genética , Glicoproteínas/efectos adversos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Mutación/genética , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito , Degeneración Nerviosa/etiología , Proteínas del Tejido Nervioso/genética , Neuroblastoma/patología , Proteínas de Neurofilamentos/metabolismo , Receptor Nogo 1 , Nervio Óptico/metabolismo , Nervio Óptico/patología , Fragmentos de Péptidos/efectos adversos , Fosforilación , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/inmunología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
20.
Mol Ther ; 20(7): 1349-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22354375

RESUMEN

Tolerance induction, and thus prevention of autoimmunity, is linked with the amount of self-antigen presented on thymic stroma. We describe that intrathymic (i.t.) delivery of the autoantigen, myelin oligodendrocyte glycoprotein (MOG), via a lentiviral vector (LV), led to tolerance induction and prevented mice from developing fulminant experimental autoimmune encephalomyelitis (EAE). This protective effect was associated with the long-term expression of antigen in transduced stromal cells, which resulted in the negative selection of MOG-specific T cells and the generation of regulatory T cells (Tregs). These selection events were effective at decreasing T-cell proliferative responses and reduced Th1 and Th17 cytokines. In vivo, this translated to a reduction in inflammation and demyelination with minimal, or no axonal loss in the spinal cords of treated animals. Significantly intrathymic delivery of MOG to mice during the priming phase of the disease failed to suppress clinical symptoms despite mice being previously treated with a clearing anti-CD4 antibody. These results indicate that targeting autoantigens to the thymic stroma might offer an alternative means to induce the de novo production of tolerant, antigen-specific T cells; however, methods that control the number and or the activation of residual autoreactive cells in the periphery are required to successfully treat autoimmune neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Tolerancia Inmunológica , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/inmunología , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Vectores Genéticos , Lentivirus/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/biosíntesis , Distribución Aleatoria , Células TH1/inmunología , Células Th17/inmunología , Timo/inmunología , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA