Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Fluor Chem ; 2452021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33840834

RESUMEN

Glycogen synthase kinase 3 (GSK-3) is an enzyme that is dysregulated in oncology neurodegeneration, neuroinflammation and several mental health illnesses. As such, GSK-3 is a long-sought after target for positron emission tomography (PET) imaging and therapeutic intervention. Herein, we report on the development and radiofluorination of two oxazole-4-carboxamides, including one bearing a non-activated aromatic ring. Both compounds demonstrated excellent selectivity in a kinase screen and inhibit GSK-3 with high affinity. [18F]OCM-49 was synthesized from [18F]fluoride using a copper-mediated reaction of an aryl boronic acid precursor, while [18F]OCM-50 used a trimethylammonium triflate precursor, and both radiotracers were translated for preclinical PET imaging in rodents. Due to superior radiochemical yields and brain uptake (peak standardized uptake value of ~2.0), [18F]OCM-50 was further evaluated in non-human primate and also showed good brain uptake and rapid clearance. Further studies to consider clinical translation of both radiotracers are underway.

2.
J Labelled Comp Radiopharm ; 63(3): 144-150, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919878

RESUMEN

Herein we report an efficient radiolabeling of a 18 F-fluorinated derivative of dual inhibitor GW2580, with its subsequent evaluation as a positron emission tomography (PET) tracer candidate for imaging of two neuroreceptor targets implicated in the pathophysiology of neurodegeneration: tropomyosin receptor kinases (TrkB/C) and colony stimulating factor receptor (CSF-1R). [18 F]FOMPyD was synthesized from a boronic acid pinacolate precursor via copper-mediated 18 F-fluorination concerted with thermal deprotection of the four Boc groups on a diaminopyrimidine moiety in an 8.7±2.8% radiochemical yield, a radiochemical purity >99%, and an effective molar activity of 187±93 GBq/µmol. [18 F]FOMPyD showed moderate brain permeability in wild-type rats (SUVmax = 0.75) and a slow washout rate. The brain uptake was partially reduced (ΔAUC40-90 = 11.6%) by administration of the nonradioactive FOMPyD (up to 30 µg/kg). In autoradiography, [18 F]FOMPyD exhibits ubiquitous distribution in rat and human brain tissues with relatively high nonspecific binding revealed by self-blocking experiment. The binding was blocked by TrkB/C inhibitors, but not with a CSF-1R inhibitor, suggesting selective binding to the former receptor. Although an unfavorable pharmacokinetic profile will likely preclude application of [18 F]FOMPyD as a PET tracer for brain imaging, the concomitant one-pot copper-mediated 18 F-fluorination/Boc-deprotection is a practical technique for the automated radiosynthesis of acid-sensitive PET tracers.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Radioquímica , Ratas
3.
Bioorg Med Chem Lett ; 29(13): 1624-1627, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31060887

RESUMEN

Carbon-11 labeled SL25.1188 is a promising reversible monoamine oxidase-B (MAO-B) radioligand that was recently translated for human positron emission tomography (PET) imaging. Herein, we report the development of a novel fluorinated derivative, namely, [18F](S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one ([18F]FSL25.1188; [18F]6), as a candidate 18F-labeled MAO-B radioligand, and, its subsequent preclinical evaluation in non-human primates (NHP). [18F]6 was produced and isolated (>6 GBq) with high radiochemical purity (>99%), and molar activity (>100 GBq/µmol at time of injection). Autoradiography studies conducted in post-mortem human brain sections revealed [18F]6 binding in MAO-B rich regions. PET imaging study of [18F]6 in NHP showed high brain uptake (SUV > 2.5) as well as a regional brain radioactivity distribution in accordance with MAO-B expression. [18F]6 displayed favorable in vivo kinetics, with an early peak in the time-activity curve followed by progressive wash-out from the NHP brain. Specificity of [18F]6 was investigated in a pre-treatment study with l-deprenyl (1.0 mg/kg) wherein reduced radioligand uptake was observed in all MAO-B rich regions. Results from the current preclinical investigation suggests [18F]6 is a promising MAO-B PET radioligand. Further evaluation of [18F]6 and structurally related 18F-analogs are underway to identify an optimized candidate for clinical research studies.


Asunto(s)
Monoaminooxidasa/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Humanos
4.
Mol Imaging ; 17: 1536012118792317, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30203712

RESUMEN

The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Inflamación/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/química , Receptores de GABA/metabolismo , Animales , Humanos
5.
Mol Pharm ; 15(2): 695-702, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29298483

RESUMEN

Dyshomeostasis or abnormal accumulation of metal ions such as copper, zinc, and iron have been linked to the pathogenesis of multiple neurodegenerative disorders including Alzheimer's disease (AD) and Huntington's disease (HD). 5,7-Dichloro-2-((dimethylamino)methyl)quinolin-8-ol, PBT2, is a second generation metal protein-attenuating compound that has recently advanced in Phase II clinical trials for the treatment of AD and HD based on promising preclinical efficacy data. Herein, we report the first radiosynthesis and preclinical positron emission tomography (PET) neuroimaging evaluation of [11C]PBT2 in rodents and nonhuman primates. Carbon-11 labeled PBT2 was synthesized in 4.8 ± 0.5% (nondecay corrected) radiochemical yield (RCY) at end-of-synthesis, based upon [11C]CH3I (n = 6), with >99% radiochemical purity and 80-90 GBq/µmol molar activity (Am) from the corresponding normethyl precursor. In the nonhuman primate brain, [11C]PBT2 uptake was extensive with peak concentration SUVpeak of 3.2-5.2 within 2.5-4.5 min postinjection in all cortical and subcortical gray matter regions (putamen > caudate > cortex ≫ white matter) followed by rapid washout from normal brain tissues. Furthermore, it is shown that [11C]PBT2 binds specifically in AD human brain tissue in vitro. The results presented here, combined with the clinical data available for PBT2, warrant the evaluation of [11C]PBT2 as an exploratory PET radiotracer in humans.


Asunto(s)
Radioisótopos de Carbono , Clioquinol/análogos & derivados , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/administración & dosificación , Enfermedad de Alzheimer/patología , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Clioquinol/administración & dosificación , Clioquinol/síntesis química , Clioquinol/farmacocinética , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Papio anubis , Radiofármacos/síntesis química , Radiofármacos/farmacocinética
6.
J Labelled Comp Radiopharm ; 61(3): 228-236, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29143408

RESUMEN

In this paper, we describe the use of Cu-mediated [18 F]fluorodeboronation for the automated production of positron emission tomography radiotracers suitable for clinical use. Two recurrent issues with the method, low radiochemical conversion on automation and protoarene byproduct purification issues, have been successfully addressed. The new method was utilized to produce sterile injectable doses of [18 F]-(±)-IPMICF17, a positron emission tomography radiotracer for tropomyosin receptor kinase B/C, using an automated synthesis module. The product was isolated in 1.9 ± 0.1% isolated radiochemical yield, excellent radiochemical purity (>99%), and high specific activity (5294 ± 1227 Ci/mmol). Quality control testing confirmed that doses were suitable for clinical use.


Asunto(s)
Radioisótopos de Flúor/química , Radiofármacos/síntesis química , Automatización/métodos , Boro/química , Cobre/química , Imidazoles/química , Ligandos , Tomografía de Emisión de Positrones/métodos , Piridazinas/química , Receptor trkB/metabolismo , Receptor trkC/metabolismo
7.
Bioorg Med Chem Lett ; 27(12): 2771-2775, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476569

RESUMEN

NTRK1/2/3 fusions have recently been characterized as low incidence oncogenic alterations across various tumor histologies. Tyrosine kinase inhibitors (TKIs) of the tropomyosin receptor kinase family TrkA/B/C (encoded by NTRK1/2/3) are showing promises in the clinic for the treatment of cancer patients whose diseases harbor NTRK tumor drivers. We describe herein the development of [18F]QMICF ([18F]-(R)-9), a quinazoline-based type-II pan-Trk radiotracer with nanomolar potencies for TrkA/B/C (IC50=85-650nM) and relevant TrkA fusions including TrkA-TPM3 (IC50=162nM). Starting from a racemic FLT3 (fms like tyrosine kinase 3) inhibitor lead with off-target TrkA activity ((±)-6), we developed and synthesized the fluorinated derivative (R)-9 in three steps and 40% overall chemical yield. Compound (R)-9 displays a favorable selectivity profile on a diverse set of kinases including FLT3 (>37-fold selectivity for TrkB/C). The mesylate precursor 16 required for the radiosynthesis of [18F]QMICF was obtained in six steps and 36% overall yield. The results presented herein support the further exploration of [18F]QMICF for imaging of Trk fusions in vivo.


Asunto(s)
Diseño de Fármacos , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Radiofármacos/farmacología , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinas/síntesis química , Quinazolinas/química , Radiofármacos/síntesis química , Radiofármacos/química , Receptor trkA/antagonistas & inhibidores , Receptor trkB/antagonistas & inhibidores , Receptor trkC/antagonistas & inhibidores , Relación Estructura-Actividad
8.
Drug Discov Today Technol ; 25: 19-26, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29233263

RESUMEN

Project-specific collaborations between academia and pharmaceutical partners are a growing phenomenon within molecular imaging and in particular in the positron emission tomography (PET) radiopharmaceutical community. This cultural shift can be attributed in part to decreased public funding in academia in conjunction with the increased reliance on outsourcing of chemistry, radiochemistry, pharmacology and molecular imaging studies by the pharmaceutical industry. This account highlights some of our personal experiences working with industrial partners to develop new PET radiochemistry methodologies for drug discovery and neuro-PET research studies. These symbiotic academic-industrial partnerships have not only led to novel radiotracers for new targets but also to the application of new carbon-11 and fluorine-18 labeling methodologies and technologies to label previously unprecedented compounds for in vivo evaluations.


Asunto(s)
Descubrimiento de Drogas , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Industria Farmacéutica , Humanos , Colaboración Intersectorial , Universidades
9.
Bioconjug Chem ; 27(2): 267-79, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26566577

RESUMEN

Unorthodox (18)F-labeling strategies not employing the formation of a carbon-(18)F bond are seldom found in radiochemistry. Historically, the formation of a boron- or silicon-(18)F bond has been introduced very early on into the repertoire of labeling chemistries, but is without translation into any clinical radiotracer besides inorganic B[(18)F]F4(-) for brain tumor diagnosis. For many decades these labeling methodologies were forgotten and have just recently been revived by a handful of researchers thinking outside the box. When breaking with established paradigms such as the inability to obtain labeled compounds of high specific activity via isotopic exchange or performing radiofluorination in aqueous media, the research community often reacts skeptically. In 2005 and 2006, two novel labeling methodologies were introduced into radiochemistry for positron emission tomography (PET) tracer development: RBF3(-) labeling reported by Perrin et al. and the SiFA methodology by Schirrmacher, Jurkschat, and Waengler et al. which is based on isotopic exchange (IE). Both labeling methodologies have been complemented by other noncanonical strategies to introduce (18)F into biomolecules of diagnostic importance, thus profoundly enriching the landscape of (18)F radiolabeling. B- and Si-based labeling strategies finally revealed that IE is a viable alternative to established and traditional radiochemistry with the advantage of simplifying both the labeling effort as well as the necessary purification of the radiotracer. Hence IE will be the focus of this contribution over other noncanonical labeling methods. Peptides for tumor imaging especially lend themselves favorably toward one-step labeling via IE, but small molecules have been described as well, taking advantage of these new approaches, and have been used successfully for brain imaging. This Review gives an account of both radiochemistries centered on boron and silicon, describing the very beginnings of their basic research, the path that led to optimization of their chemistries, and the first encouraging preclinical results paving the way to their clinical use. This side by side approach will give the reader the opportunity to follow the development of a new basic discovery into a clinically applicable radiotracer including all the hurdles that have had to be overcome.


Asunto(s)
Boratos/química , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Silicio/química , Animales , Fluoruros/química , Humanos , Péptidos/química , Bibliotecas de Moléculas Pequeñas/química
10.
Molecules ; 20(12): 22000-27, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26690113

RESUMEN

Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.


Asunto(s)
Neoplasias/diagnóstico por imagen , Inhibidores de Proteínas Quinasas/síntesis química , Radiofármacos/síntesis química , Animales , Humanos , Neoplasias/enzimología , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Tirosina Quinasas/metabolismo , Radiofármacos/farmacocinética
11.
Bioorg Med Chem Lett ; 24(20): 4784-90, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25257201

RESUMEN

The tropomyosin receptor kinases (TrkA/B/C) and colony-stimulating factor-1 receptor (CSF-1R) represent highly pursued oncological therapeutic targets. The 2,4-diaminopyrimidine inhibitor GW2580 (9) has been previously reported as a highly selective low nanomolar TrkB/TrkC/CSF-1R inhibitor. In this study, fluorinated derivatives of 9 were designed, synthesized and evaluated in enzymatic assays. The highly potent inhibitor 10 was identified, which retained the selectivity profile of the non fluorinated lead compound 9, and the radiosynthesis of [(18)F]10 was developed. The results obtained from the biological evaluation of 10 and the radiosynthesis of [(18)F]10 support further investigation of this tracer as a potential PET imaging probe for TrkB/TrkC and CSF-1R.


Asunto(s)
Diaminas/farmacología , Tomografía de Emisión de Positrones/métodos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Radiofármacos/farmacología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Receptor trkB/antagonistas & inhibidores , Receptor trkC/antagonistas & inhibidores , Cristalografía por Rayos X , Diaminas/química , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor/química , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Radiofármacos/química , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Relación Estructura-Actividad
12.
Amino Acids ; 45(5): 1097-108, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23921782

RESUMEN

Radiolabeled peptides have emerged as an attractive platform for the diagnostic and therapeutic oncology. However, the (11)C-radiolabeling of peptides for positron emission tomography (PET) has been poorly explored, owing to the relatively short half-life of carbon-11 (t 1/2 = 20.3 min) and time-consuming multi-step radiochemical reactions. Existing methods have found limited use and are not routinely encountered in the production of radiotracers. Herein, we propose a facile one-step direct (11)C-methylation of cysteine residues in peptides using [(11)C]methyl triflate under ambient temperatures (20 °C) and short reaction times, on the order of seconds. Good regioselectivity of this method was demonstrated by HPLC in a simple peptide (glutathione, GSH) and a more complex test decapeptide (Trp-Tyr-Trp-Ser-Arg-Cys-Lys-Trp-Thr-Gly) bearing multiple nucleophilic sites. In addition, we extend this method towards the synthesis of [(11)C]Cys(Me)-[Tyr(3)-octreotate] as a demonstration of applicability for peptides of biological interest. This octreotate derivative was obtained in non-decay-corrected radiochemical yields of 11 ± 2 % (n = 3) with a synthesis time of approx. 30 min.


Asunto(s)
Cisteína/química , Mesilatos/química , Péptidos/química , Tomografía de Emisión de Positrones/instrumentación , Radiofármacos/síntesis química , Radioisótopos de Carbono/química , Marcaje Isotópico
13.
Bioorg Med Chem ; 21(24): 7816-29, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24183588

RESUMEN

The interaction of tropomyosin-related kinase B (TrkB) with the cognate ligand brain-derived neurotrophic factor (BDNF) mediates fundamental pathways in the development of the nervous system. TrkB signaling alterations are linked to numerous neurodegenerative diseases and conditions. Herein we report the synthesis, biological evaluation and radiosynthesis of the first TrkB radioligands based on the recently identified 7,8-dihydroxyflavone chemotype. 2-(4-[(18)F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one ([(18)F]10b) was synthesized in high radiochemical yields via an efficient SNAr radiofluorination involving a para-Michael acceptor substituted aryl followed by BBr3-promoted double demethylation. Selective N-[(11)C]methylation afforded 2-(4-([N-methyl-(11)C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one ([(11)C]10c) from the fully deprotected catechol-bearing normethyl precursor 13 with [(11)C]MeOTf. In vitro autoradiography of [(18)F]10b with transverse rat brain sections revealed high specific binding in the cortex, striatum, hippocampus and thalamus in accordance with expected TrkB distribution. Blockade experiments with both 7,8-dihydroxyflavone (1a) and TrkB cognate ligand, BDNF, led to decreases of 80% and 85% of radioligand binding strongly supporting the hypothesis that 7,8-dihydroxyflavones exert their effect on TrkB phosphorylation via direct TrkB extracellular domain (ECD) binding. Positron emission tomography (PET) studies revealed that [(18)F]10b and [(11)C]10c brain uptake is minimal and that they are rapidly eliminated from the plasma (effective plasma half-life 5-10 min) via hepatic secretion. Nevertheless, the high specific binding and TrkB specificity derived from in vitro experiments suggests that the 7,8-disubstituted flavone chemotype represents a promising scaffold for the development of TrkB radiotracers for PET.


Asunto(s)
Encéfalo/diagnóstico por imagen , Flavonas , Tomografía de Emisión de Positrones , Radiofármacos , Receptor trkB/metabolismo , Animales , Encéfalo/metabolismo , Cristalografía por Rayos X , Flavonas/síntesis química , Flavonas/química , Flavonas/farmacocinética , Ligandos , Modelos Moleculares , Estructura Molecular , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley
14.
Front Neurosci ; 15: 725873, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566568

RESUMEN

[11C]Verubulin (a.k.a.[11C]MCP-6827), [11C]HD-800 and [11C]colchicine have been developed for imaging microtubules (MTs) with positron emission tomography (PET). The objective of this work was to conduct an in vivo comparison of [11C]verubulin for MT imaging in mouse and rat brain, as well as an in vitro study with this radiotracer in rodent and human Alzheimer's Disease tissue. Our preliminary PET imaging studies of [11C]verubulin in rodents revealed contradictory results between mouse and rat brain uptake under pretreatment conditions. In vitro autoradiography with [11C]verubulin showed an unexpected higher uptake in AD patient tissue compared with healthy controls. We also conducted the first comparative in vivo PET imaging study with [11C]verubulin, [11C]HD-800 and [11C]colchicine in a non-human primate. [11C]Verubulin and [11C]HD-800 require pharmacokinetic modeling and quantification studies to understand the role of how these radiotracers bind to MTs before translation to human use.

15.
Front Chem ; 7: 23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30815434

RESUMEN

Interleukin-1ß (IL-1ß) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1ß signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1ß and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H-d-Arg-d-Tyr-d-Thr-d-Val-d-Glu-d-Leu-d-Ala-NH2) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1, a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-ß-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1ß-induced IL-1ß synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling.

16.
ACS Chem Neurosci ; 10(6): 2697-2702, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31017386

RESUMEN

The tropomyosin receptor kinase TrkA/B/C family is responsible for human neuronal growth, survival, and differentiation from early nervous system development stages onward. Downregulation of TrkA/B/C receptors characterizes numerous neurological disorders including Alzheimer's disease (AD). Abnormally expressed Trk receptors or chimeric Trk fusion proteins are also well-characterized oncogenic drivers in a variety of neurogenic and non-neurogenic human neoplasms and are currently the focus of intensive clinical research. Previously, we have described the clinical translation of a highly selective and potent carbon-11-labeled pan-Trk radioligand and the preclinical characterization of the optimized fluorine-18-labeled analogue, [18F]TRACK, for in vivo Trk positron emission tomography (PET) imaging. We describe herein central nervous system selectivity assessment and first-in-human study of [18F]TRACK.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Proteínas Tirosina Quinasas Receptoras/análisis , Animales , Humanos , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor trkA/análisis , Receptor trkA/metabolismo , Receptor trkB/análisis , Receptor trkB/metabolismo , Receptor trkC/análisis , Receptor trkC/metabolismo
17.
Pharmaceuticals (Basel) ; 12(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609832

RESUMEN

The tropomyosin receptor kinases family (TrkA, TrkB, and TrkC) supports neuronal growth, survival, and differentiation during development, adult life, and aging. TrkA/B/C downregulation is a prominent hallmark of various neurological disorders including Alzheimer's disease (AD). Abnormally expressed or overexpressed full-length or oncogenic fusion TrkA/B/C proteins were shown to drive tumorigenesis in a variety of neurogenic and non-neurogenic human cancers and are currently the focus of intensive clinical research. Neurologic and oncologic studies of the spatiotemporal alterations in TrkA/B/C expression and density and the determination of target engagement of emerging antineoplastic clinical inhibitors in normal and diseased tissue are crucially needed but have remained largely unexplored due to the lack of suitable non-invasive probes. Here, we review the recent development of carbon-11- and fluorine-18-labeled positron emission tomography (PET) radioligands based on specifically designed small molecule kinase catalytic domain-binding inhibitors of TrkA/B/C. Basic developments in medicinal chemistry, radiolabeling and translational PET imaging in multiple species including humans are highlighted.

18.
J Med Chem ; 62(21): 9600-9617, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31535859

RESUMEN

Using structure-guided design, several cell based assays, and microdosed positron emission tomography (PET) imaging, we identified a series of highly potent, selective, and brain-penetrant oxazole-4-carboxamide-based inhibitors of glycogen synthase kinase-3 (GSK-3). An isotopologue of our first-generation lead, [3H]PF-367, demonstrates selective and specific target engagement in vitro, irrespective of the activation state. We discovered substantial ubiquitous GSK-3-specific radioligand binding in Tg2576 Alzheimer's disease (AD), suggesting application for these compounds in AD diagnosis and identified [11C]OCM-44 as our lead GSK-3 radiotracer, with optimized brain uptake by PET imaging in nonhuman primates. GSK-3ß-isozyme selectivity was assessed to reveal OCM-51, the most potent (IC50 = 0.030 nM) and selective (>10-fold GSK-3ß/GSK-3α) GSK-3ß inhibitor known to date. Inhibition of CRMP2T514 and tau phosphorylation, as well as favorable therapeutic window against WNT/ß-catenin signaling activation, was observed in cells.


Asunto(s)
Encéfalo/metabolismo , Descubrimiento de Drogas , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Tomografía de Emisión de Positrones/métodos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Dominio Catalítico , Glucógeno Sintasa Quinasa 3 beta/química , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Neuroimagen , Oxazoles/química , Oxazoles/metabolismo , Oxazoles/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
19.
Chem Commun (Camb) ; 54(84): 11835-11842, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30191929

RESUMEN

Advances in the field of fluorine chemistry have been applied extensively to the syntheses of 18F-labelled organic compounds and radiopharmaceuticals. However, 18F has sparely been used as a tool to explore inorganic chemistry and can be viewed as a research area worthy of further development. This review highlights the application of 18F in development of inorganic fluorinating agents, mechanistic studies and imaging tools.

20.
J Nucl Med ; 59(4): 568-572, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29284673

RESUMEN

Straightforward radiosynthesis protocols for 18F-labeled radiopharmaceuticals are an indispensable but often overlooked prerequisite to successfully perform molecular imaging studies in vivo by PET. In recent years, thanks to the expansion of the 18F chemical toolbox, structurally diverse and novel clinically relevant radiopharmaceuticals have been synthesized with both high efficiency and ready implementation. This article provides an overview of recent 18F-labeling methodologies, specifically for B-18F, Si-18F, Al-18F, and iodine (III)-mediated radiofluorination via the spirocyclic iodonium ylide technology.


Asunto(s)
Radioisótopos de Flúor/química , Halogenación , Radioquímica/métodos , Compuestos de Espiro/química , Aluminio/química , Boro/química , Carbono/química , Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA