RESUMEN
PURPOSE: We and others have demonstrated that MYC-amplified medulloblastoma (MB) cells are susceptible to class I histone deacetylase inhibitor (HDACi) treatment. However, single drug treatment with HDACi has shown limited clinical efficacy. We hypothesized that addition of a second compound acting synergistically with HDACi may enhance efficacy. METHODS: We used a gene expression dataset to identify PLK1 as a second target in MB cells and validated the relevance of PLK1 in MB. We measured cell metabolic activity, viability, and cycle progression in MB cells after treatment with PLK1-specific inhibitors (PLK1i). Chou-Talalay synergy calculations were used to determine the nature of class I HDACi entinostat and PLK1i interaction which was validated. Finally, the clinical potential of the combination was assessed in the in vivo experiment. RESULTS: MYC-amplified tumor cells are highly sensitive towards treatment with ATP-competitive PLK1i as a monotherapy. Entinostat and PLK1i in combination act synergistically in MYC-driven MB cells, exerting cytotoxic effects at clinically relevant concentrations. The downstream effect is exerted via MYC-related pathways, pointing out the potential of MYC amplification as a clinically feasible predictive biomarker for patient selection. While entinostat significantly extended survival of mice implanted with orthotopic MYC-amplified MB PDX, there was no evidence of the improvement of survival when treating the animals with the combination. CONCLUSION: The combination of entinostat and PLK1i showed synergistic interaction in vitro, but not in vivo. Therefore, further screening of blood-brain barrier penetrating PLK1i is warranted to determine the true potential of the combination as no on-target activity was observed after PLK1i volasertib treatment in vivo.
Asunto(s)
Antineoplásicos , Neoplasias Cerebelosas , Meduloblastoma , Ratones , Animales , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Antineoplásicos/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Línea Celular TumoralAsunto(s)
Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Proteogenómica/métodos , Translocación GenéticaAsunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas , Regulación Neoplásica de la Expresión Génica , Meduloblastoma/clasificación , Meduloblastoma/genética , ARN Circular/genética , Vía de Señalización Wnt , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Metilación de ADN , Perfilación de la Expresión Génica , Humanos , Meduloblastoma/metabolismoRESUMEN
The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Humanos , Ratones , Proteínas de Ciclo Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteómica , Factores de Transcripción/genética , Transferasas , Proteína con Dedos de Zinc GLI1/genéticaRESUMEN
Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.
Asunto(s)
Epigenoma , Meduloblastoma , Factores de Transcripción NFI , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/genética , Ratones , Humanos , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Epigénesis Genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proliferación Celular/genética , Diferenciación Celular/genéticaRESUMEN
Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , MicroARNs , ARN Largo no Codificante , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/genética , Dineínas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Glicoproteínas de Membrana/metabolismo , Ratones , MicroARNs/genética , ARN Largo no Codificante/genéticaRESUMEN
Hedgehog signalling (Hh) is a developmental conserved pathway strongly involved in cancers when deregulated. This important pathway is orchestrated by numerous regulators, transduces through distinct routes and is finely tuned at multiple levels. In this regard, ubiquitylation processes stand as essential for controlling Hh pathway output. Although this post-translational modification governs proteins turnover, it is also implicated in non-proteolytic events, thereby regulating the most important cellular functions. The HECT E3 ligase Itch, well known to control immune response, is emerging to have a pivotal role in tumorigenesis. By illustrating Itch specificities on Hh signalling key components, here we review the role of this HECT E3 ubiquitin ligase in suppressing Hh-dependent tumours and explore its potential as promising target for innovative therapeutic approaches.
Asunto(s)
Proteínas Hedgehog/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Humanos , Modelos BiológicosRESUMEN
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated ßTrCP, the substrate-receptor subunit of the SCFßTrCP ubiquitin ligase, and promotes ßTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors.
Asunto(s)
Aminopeptidasas/fisiología , Antígenos de Histocompatibilidad Menor/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Carcinogénesis/genética , Proteínas Hedgehog/metabolismo , Ratones , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Células 3T3 NIH , Estabilidad Proteica , Proteolisis , Transducción de SeñalRESUMEN
It is nowadays widely accepted that some tumors have a niche of cells endowed with stemness features, which may cause resistance to conventional anticancer therapies and relapse/recurrence of the malignancy. These cells are usually referred to as cancer stem cells (CSCs) and, different from normal cancer cells, are rather quiescent. Targeting CSCs is thus a highly challenging but promising strategy to counteract tumor growth, and to develop innovative anticancer agents. Here, we review the chemical, biological and multidisciplinary efforts that have been spent in targeting CSCsspecific signaling pathways Notch and Hedgehog (Hh) for anticancer drug discovery. In particular, the use of natural products as a valuable source of lead compounds or chemical biology tools is emphasized. Examples of natural products functionalization through semi-synthetic transformations or total syntheses, aimed at improving pharmacokinetics and/or pharmacodynamics properties of natural products in Notch or Hh inhibition, are provided as well.
Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antineoplásicos/farmacocinética , Productos Biológicos/farmacocinética , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Proteínas Hedgehog/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/patología , Receptores Notch/efectos de los fármacos , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Aberrant activation of the Hedgehog (Hh) pathway is responsible for the onset and progression of several malignancies. Small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector Gli1 have thus emerged recently as valuable anticancer agents. Here, we have designed, synthesized, and tested new Hh inhibitors taking advantage by the highly versatile and privileged isoflavone scaffold. The introduction of specific substitutions on the isoflavone's ring B allowed the identification of molecules targeting preferentially Smo or Gli1. Biological assays coupled with molecular modeling corroborated the design strategy, and provided new insights into the mechanism of action of these molecules. The combined administration of two different isoflavones behaving as Smo and Gli antagonists, respectively, in primary medulloblastoma (MB) cells highlighted the synergistic effects of these agents, thus paving the way to further and innovative strategies for the pharmacological inhibition of Hh signaling.
Asunto(s)
Proteínas Hedgehog/antagonistas & inhibidores , Isoflavonas/química , Isoflavonas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/antagonistas & inhibidores , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células Cultivadas , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Diseño de Fármacos , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Ratones , Modelos Moleculares , Receptor Smoothened/metabolismo , Células Tumorales Cultivadas , Proteína con Dedos de Zinc GLI1/metabolismoRESUMEN
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/ß-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis.
Asunto(s)
Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arrestina beta 2/metabolismo , Secuencias de Aminoácidos , Animales , Carcinogénesis , Femenino , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/enzimología , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Arrestina beta 2/genéticaRESUMEN
Hedgehog (Hh) inhibitors have emerged as valid tools in the treatment of a wide range of cancers. Indeed, aberrant activation of the Hh pathway occurring either by ligand-dependent or -independent mechanisms is a key driver in tumorigenesis. The smoothened (Smo) receptor is one of the main upstream transducers of the Hh signaling and is a validated target for the development of anticancer compounds, as underlined by the FDA-approved Smo antagonist Vismodegib (GDC-0449/Erivedge) for the treatment of basal cell carcinoma. However, Smo mutations that confer constitutive activity and drug resistance have emerged during treatment with Vismodegib. For this reason, the development of new effective Hh inhibitors represents a major challenge for cancer therapy. Natural products have always represented a unique source of lead structures in drug discovery, and in recent years have been used to modulate the Hh pathway at multiple levels. Here, starting from an in house library of natural compounds and their derivatives, we discovered novel chemotypes of Hh inhibitors by mean of virtual screening against the crystallographic structure of Smo. Hh functional based assay identified the chalcone derivative 12 as the most effective Hh inhibitor within the test set. The chalcone 12 binds the Smo receptor and promotes the displacement of Bodipy-Cyclopamine in both Smo WT and drug-resistant Smo mutant. Our molecule stands as a promising Smo antagonist able to specifically impair the growth of Hh-dependent tumor cells in vitro and in vivo and medulloblastoma stem-like cells and potentially overcome the associated drug resistance.