Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 207(12): 1620-1632, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37017487

RESUMEN

Rationale: It is currently unclear which patients with obstructive sleep apnea (OSA) are at increased cardiovascular risk. Objective: To investigate the value of pulse wave amplitude drops (PWADs), reflecting sympathetic activations and vasoreactivity, as a biomarker of cardiovascular risk in OSA. Methods: PWADs were derived from pulse oximetry-based photoplethysmography signals in three prospective cohorts: HypnoLaus (N = 1,941), the Pays-de-la-Loire Sleep Cohort (PLSC; N = 6,367), and "Impact of Sleep Apnea syndrome in the evolution of Acute Coronary syndrome. Effect of intervention with CPAP" (ISAACC) (N = 692). The PWAD index was the number of PWADs (>30%) per hour during sleep. All participants were divided into subgroups according to the presence or absence of OSA (defined as ⩾15 or more events per hour or <15/h, respectively, on the apnea-hypopnea index) and the median PWAD index. Primary outcome was the incidence of composite cardiovascular events. Measurements and Main Results: Using Cox models adjusted for cardiovascular risk factors (hazard ratio; HR [95% confidence interval]), patients with a low PWAD index and OSA had a higher incidence of cardiovascular events compared with the high-PWAD and OSA group and those without OSA in the HypnoLaus cohort (HR, 2.16 [1.07-4.34], P = 0.031; and 2.35 [1.12-4.93], P = 0.024) and in the PLSC (1.36 [1.13-1.63], P = 0.001; and 1.44 [1.06-1.94], P = 0.019), respectively. In the ISAACC cohort, the low-PWAD and OSA untreated group had a higher cardiovascular event recurrence rate than that of the no-OSA group (2.03 [1.08-3.81], P = 0.028). In the PLSC and HypnoLaus cohorts, every increase of 10 events per hour in the continuous PWAD index was negatively associated with incident cardiovascular events exclusively in patients with OSA (HR, 0.85 [0.73-0.99], P = 0.031; and HR, 0.91 [0.86-0.96], P < 0.001, respectively). This association was not significant in the no-OSA group and the ISAACC cohort. Conclusions: In patients with OSA, a low PWAD index reflecting poor autonomic and vascular reactivity was independently associated with a higher cardiovascular risk.


Asunto(s)
Enfermedades Cardiovasculares , Apnea Obstructiva del Sueño , Humanos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/complicaciones , Estudios Prospectivos , Factores de Riesgo , Apnea Obstructiva del Sueño/complicaciones , Factores de Riesgo de Enfermedad Cardiaca , Biomarcadores
2.
Neuroimage ; 274: 120141, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37120043

RESUMEN

A brief period of monocular deprivation (MD) induces short-term plasticity of the adult visual system. Whether MD elicits neural changes beyond visual processing is yet unclear. Here, we assessed the specific impact of MD on neural correlates of multisensory processes. Neural oscillations associated with visual and audio-visual processing were measured for both the deprived and the non-deprived eye. Results revealed that MD changed neural activities associated with visual and multisensory processes in an eye-specific manner. Selectively for the deprived eye, alpha synchronization was reduced within the first 150 ms of visual processing. Conversely, gamma activity was enhanced in response to audio-visual events only for the non-deprived eye within 100-300 ms after stimulus onset. The analysis of gamma responses to unisensory auditory events revealed that MD elicited a crossmodal upweight for the non-deprived eye. Distributed source modeling suggested that the right parietal cortex played a major role in neural effects induced by MD. Finally, visual and audio-visual processing alterations emerged for the induced component of the neural oscillations, indicating a prominent role of feedback connectivity. Results reveal the causal impact of MD on both unisensory (visual and auditory) and multisensory (audio-visual) processes and, their frequency-specific profiles. These findings support a model in which MD increases excitability to visual events for the deprived eye and audio-visual and auditory input for the non-deprived eye.


Asunto(s)
Corteza Visual , Adulto , Humanos , Corteza Visual/fisiología , Percepción Visual , Privación Sensorial/fisiología , Plasticidad Neuronal/fisiología , Visión Monocular/fisiología
3.
Neuroimage ; 274: 120133, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094626

RESUMEN

STUDY OBJECTIVES: Sleep slow wave activity, as measured using EEG delta power (<4 Hz), undergoes significant changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent variations in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the transition between childhood and adulthood. METHODS: We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing children (N = 21, 10.3 ± 1.5 years old) and young healthy adults (N = 18, 31.1 ± 4.4 years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated algorithms. The threshold for statistical significance was set at p = 0.05. RESULTS: The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the slow waves of children also displayed a tendency to more strongly involve and originate from the right than the left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence on different generation and synchronization mechanisms. CONCLUSIONS: Changes in slow wave origin, synchronization, and propagation at the transition between childhood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and interpret physiological and pathological development.


Asunto(s)
Ondas Encefálicas , Neocórtex , Adulto , Humanos , Niño , Electroencefalografía , Sueño/fisiología , Ondas Encefálicas/fisiología
4.
J Neurosci ; 40(29): 5589-5603, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541070

RESUMEN

The slow waves of non-rapid eye movement (NREM) sleep reflect experience-dependent plasticity and play a direct role in the restorative functions of sleep. Importantly, slow waves behave as traveling waves, and their propagation is assumed to occur through cortico-cortical white matter connections. In this light, the corpus callosum (CC) may represent the main responsible for cross-hemispheric slow-wave propagation. To verify this hypothesis, we performed overnight high-density (hd)-EEG recordings in five patients who underwent total callosotomy due to drug-resistant epilepsy (CPs; two females), in three noncallosotomized neurologic patients (NPs; two females), and in a sample of 24 healthy adult subjects (HSs; 13 females). In all CPs slow waves displayed a significantly reduced probability of cross-hemispheric propagation and a stronger inter-hemispheric asymmetry. In both CPs and HSs, the incidence of large slow waves within individual NREM epochs tended to differ across hemispheres, with a relative overall predominance of the right over the left hemisphere. The absolute magnitude of this asymmetry was greater in CPs relative to HSs. However, the CC resection had no significant effects on the distribution of slow-wave origin probability across hemispheres. The present results indicate that CC integrity is essential for the cross-hemispheric traveling of slow waves in human sleep, which is in line with the assumption of a direct relationship between white matter integrity and slow-wave propagation. Our findings also revealed a residual cross-hemispheric slow-wave propagation that may rely on alternative pathways, including cortico-subcortico-cortical loops. Finally, these data indicate that the lack of the CC does not lead to differences in slow-wave generation across brain hemispheres.SIGNIFICANCE STATEMENT The slow waves of NREM sleep behave as traveling waves, and their propagation has been suggested to reflect the integrity of white matter cortico-cortical connections. To directly assess this hypothesis, here we investigated the role of the corpus callosum in the cortical spreading of NREM slow waves through the study of a rare population of totally callosotomized patients. Our results demonstrate a causal role of the corpus callosum in the cross-hemispheric traveling of sleep slow waves. Additionally, we found that callosotomy does not affect the relative tendency of each hemisphere at generating slow waves. Incidentally, we also found that slow waves tend to originate more often in the right than in the left hemisphere in both callosotomized and healthy adult individuals.


Asunto(s)
Ondas Encefálicas , Cuerpo Calloso/fisiología , Sueño de Onda Lenta , Adulto , Anciano , Cuerpo Calloso/cirugía , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimiento de Escisión Encefálica
5.
J Cogn Neurosci ; 33(11): 2342-2356, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618906

RESUMEN

Emotion self-regulation relies both on cognitive and behavioral strategies implemented to modulate the subjective experience and/or the behavioral expression of a given emotion. Although it is known that a network encompassing fronto-cingulate and parietal brain areas is engaged during successful emotion regulation, the functional mechanisms underlying failures in emotion suppression (ES) are still unclear. In order to investigate this issue, we analyzed video and high-density EEG recordings of 20 healthy adult participants during an ES and a free expression task performed on two consecutive days. Changes in facial expression during ES, but not free expression, were preceded by local increases in sleep-like activity (1-4 Hz) in brain areas responsible for emotional suppression, including bilateral anterior insula and anterior cingulate cortex, and in right middle/inferior frontal gyrus (p < .05, corrected). Moreover, shorter sleep duration the night before the ES experiment correlated with the number of behavioral errors (p = .03) and tended to be associated with higher frontal sleep-like activity during ES failures (p = .09). These results indicate that local sleep-like activity may represent the cause of ES failures in humans and may offer a functional explanation for previous observations linking lack of sleep, changes in frontal activity, and emotional dysregulation.


Asunto(s)
Regulación Emocional , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Emociones , Humanos , Imagen por Resonancia Magnética , Sueño
6.
Neuroimage ; 236: 118117, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940148

RESUMEN

EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.


Asunto(s)
Tronco Encefálico/fisiología , Ondas Encefálicas/fisiología , Cerebelo/fisiología , Acoplamiento Neurovascular/fisiología , Corteza Sensoriomotora/fisiología , Sueño de Onda Lenta/fisiología , Tálamo/fisiología , Adulto , Tronco Encefálico/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Electroencefalografía , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Sensoriomotora/diagnóstico por imagen , Tálamo/diagnóstico por imagen
7.
J Sleep Res ; 30(2): e13069, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32412149

RESUMEN

Although excessive daytime sleepiness is commonly evaluated in clinical and research settings using the Epworth Sleepiness Scale, few studies have assessed the factors associated with its incidence in the general population. We prospectively investigated the predictors of incident and persistent excessive daytime sleepiness in 2,751 subjects (46.1% men, mean age 56.0 ± 9.8 years) from the CoLaus-PsyCoLaus population-based cohort (Lausanne, Switzerland) over 5 years. Participants completed the Epworth Sleepiness Scale and the Pittsburgh Sleep Quality Index, and underwent a full clinical evaluation at baseline and 5 years afterwards. Ambulatory polysomnography was performed at baseline in a sub-sample of 1,404 subjects. Among the 2,438 subjects without excessive daytime sleepiness (Epworth Sleepiness Scale ≤ 10) at baseline, the 5-year incidence of excessive daytime sleepiness was 5.1% (n = 124). Multivariate logistic regression revealed that male sex, depressive symptoms, reported poor sleep quality and moderate to severe obstructive sleep apnea were independent predictors of incident excessive daytime sleepiness, while older age, moderate coffee consumption, periodic leg movement during sleep and hypertension were independent protective factors. Stratified analysis according to sex and age showed some distinctive associations. Among the 313 patients with excessive daytime sleepiness at baseline, 137 (43.8%) had persistent excessive daytime sleepiness 5 years later. Our findings provide new insights into the predictors of incident excessive daytime sleepiness, but interventional studies are needed to understand the impact of treating these risk factors on the incidence of excessive daytime sleepiness.


Asunto(s)
Trastornos de Somnolencia Excesiva/diagnóstico , Polisomnografía/métodos , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
8.
J Neurosci ; 39(14): 2686-2697, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30737310

RESUMEN

Although the EEG slow wave of sleep is typically considered to be a hallmark of nonrapid eye movement (NREM) sleep, recent work in mice has shown that slow waves can also occur in REM sleep. Here, we investigated the presence and cortical distribution of negative delta (1-4 Hz) waves in human REM sleep by analyzing high-density EEG sleep recordings obtained in 28 healthy subjects. We identified two clusters of delta waves with distinctive properties: (1) a frontal-central cluster characterized by ∼2.5-3.0 Hz, relatively large, notched delta waves (so-called "sawtooth waves") that tended to occur in bursts, were associated with increased gamma activity and rapid eye movements (EMs), and upon source modeling displayed an occipital-temporal and a frontal-central component and (2) a medial-occipital cluster characterized by more isolated, slower (<2 Hz), and smaller waves that were not associated with rapid EMs, displayed a negative correlation with gamma activity, and were also found in NREM sleep. Therefore, delta waves are an integral part of REM sleep in humans and the two identified subtypes (sawtooth and medial-occipital slow waves) may reflect distinct generation mechanisms and functional roles. Sawtooth waves, which are exclusive to REM sleep, share many characteristics with ponto-geniculo-occipital waves described in animals and may represent the human equivalent or a closely related event, whereas medial-occipital slow waves appear similar to NREM sleep slow waves.SIGNIFICANCE STATEMENT The EEG slow wave is typically considered a hallmark of nonrapid eye movement (NREM) sleep, but recent work in mice has shown that it can also occur in REM sleep. By analyzing high-density EEG recordings collected in healthy adult individuals, we show that REM sleep is characterized by prominent delta waves also in humans. In particular, we identified two distinctive clusters of delta waves with different properties: a frontal-central cluster characterized by faster, activating "sawtooth waves" that share many characteristics with ponto-geniculo-occipital waves described in animals and a medial-occipital cluster containing slow waves that are more similar to NREM sleep slow waves. These findings indicate that REM sleep is a spatially and temporally heterogeneous state and may contribute to explaining its known functional and phenomenological properties.


Asunto(s)
Corteza Cerebral/fisiología , Ritmo Delta/fisiología , Sueño REM/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
9.
Brain Cogn ; 139: 105517, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945602

RESUMEN

Transcendental Meditation (TM) is defined as a mental process of transcending using a silent mantra. Previous work showed that relatively brief period of TM practice leads to decreases in stress and anxiety. However, whether these changes are subserved by specific morpho-functional brain modifications (as observed in other meditation techniques) is still unclear. Using a longitudinal design, we combined psychometric questionnaires, structural and resting-state functional magnetic resonance imaging (RS-fMRI) to investigate the potential brain modifications underlying the psychological effects of TM. The final sample included 19 naïve subjects instructed to complete two daily 20-min TM sessions, and 15 volunteers in the control group. Both groups were evaluated at recruitment (T0) and after 3 months (T1). At T1, only meditators showed a decrease in perceived anxiety and stress (t(18) = 2.53, p = 0.02), which correlated negatively with T1-T0 changes in functional connectivity among posterior cingulate cortex (PCC), precuneus and left superior parietal lobule. Additionally, TM practice was associated with increased connectivity between PCC and right insula, likely reflecting changes in interoceptive awareness. No structural changes were observed in meditators or control subjects. These preliminary findings indicate that beneficial effects of TM may be mediated by functional brain changes that take place after a short practice period of 3 months.


Asunto(s)
Ansiedad/terapia , Encéfalo/diagnóstico por imagen , Meditación/métodos , Estrés Psicológico/terapia , Adulto , Ansiedad/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Femenino , Neuroimagen Funcional , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Parietal/diagnóstico por imagen , Psicometría , Estrés Psicológico/diagnóstico por imagen , Encuestas y Cuestionarios , Adulto Joven
10.
J Neurosci ; 38(43): 9175-9185, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30201768

RESUMEN

Dreaming can occur in both rapid eye movement (REM) and non-REM (NREM) sleep. We recently showed that in both REM and NREM sleep, dreaming is associated with local decreases in slow wave activity (SWA) in posterior brain regions. To expand these findings, here we asked how specific features of slow waves and spindles, the hallmarks of NREM sleep, relate to dream experiences. Fourteen healthy human subjects (10 females) underwent nocturnal high-density EEG recordings combined with a serial awakening paradigm. Reports of dreaming, compared with reports of no experience, were preceded by fewer, smaller, and shallower slow waves, and faster spindles, especially in central and posterior cortical areas. We also identified a minority of very steep and large slow waves in frontal regions, which occurred on a background of reduced SWA and were associated with high-frequency power increases (local "microarousals") heralding the successful recall of dream content. These results suggest that the capacity of the brain to generate experiences during sleep is reduced in the presence of neuronal off-states in posterior and central brain regions, and that dream recall may be facilitated by the intermittent activation of arousal systems during NREM sleep.SIGNIFICANCE STATEMENT By combining high-density EEG recordings with a serial awakening paradigm in healthy subjects, we show that dreaming in non-rapid eye movement sleep occurs when slow waves in central and posterior regions are sparse, small, and shallow. We also identified a small subset of very large and steep frontal slow waves that are associated with high-frequency activity increases (local "microarousals") heralding successful recall of dream content. These results provide noninvasive measures that could represent a useful tool to infer the state of consciousness during sleep.


Asunto(s)
Sueños/fisiología , Electroencefalografía/tendencias , Polisomnografía/tendencias , Sueño de Onda Lenta/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fases del Sueño/fisiología , Adulto Joven
11.
J Neurophysiol ; 121(6): 2140-2152, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30943100

RESUMEN

Previous studies have shown that regional slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep is modulated by prior experience and learning. Although this effect has been convincingly demonstrated for the sensorimotor domain, attempts to extend these findings to the visual system have provided mixed results. In this study we asked whether depriving subjects of external visual stimuli during daytime would lead to regional changes in slow waves during sleep and whether the degree of "internal visual stimulation" (spontaneous imagery) would influence such changes. In two 8-h sessions spaced 1 wk apart, 12 healthy volunteers either were blindfolded while listening to audiobooks or watched movies (control condition), after which their sleep was recorded with high-density EEG. We found that during NREM sleep, the number of small, local slow waves in the occipital cortex decreased after listening with blindfolding relative to movie watching in a way that depended on the degree of visual imagery subjects reported during blindfolding: subjects with low visual imagery showed a significant reduction of occipital sleep slow waves, whereas those who reported a high degree of visual imagery did not. We also found a positive relationship between the reliance on visual imagery during blindfolding and audiobook listening and the degree of correlation in sleep SWA between visual areas and language-related areas. These preliminary results demonstrate that short-term alterations in visual experience may trigger slow-wave changes in cortical visual areas. Furthermore, they suggest that plasticity-related EEG changes during sleep may reflect externally induced ("bottom up") visual experiences, as well as internally generated ("top down") processes. NEW & NOTEWORTHY Previous work has shown that slow-wave activity, a marker of sleep depth, is linked to neural plasticity in the sensorimotor cortex. We show that after short-term visual deprivation, subjects who reported little visual imagery had a reduced incidence of occipital slow waves. This effect was absent in subjects who reported strong spontaneous visual imagery. These findings suggest that visual imagery may "substitute" for visual perception and induce similar changes in non-rapid eye movement slow waves.


Asunto(s)
Ondas Encefálicas/fisiología , Imaginación/fisiología , Lóbulo Occipital/fisiología , Privación Sensorial/fisiología , Sueño de Onda Lenta/fisiología , Percepción del Habla/fisiología , Adulto , Femenino , Humanos , Masculino , Percepción Visual , Adulto Joven
12.
Neuroimage ; 178: 23-35, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29758338

RESUMEN

INTRODUCTION: Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. METHODS: The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). RESULTS: Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. CONCLUSIONS: Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults.


Asunto(s)
Ondas Encefálicas/fisiología , Desarrollo Infantil/fisiología , Electroencefalografía/métodos , Fases del Sueño/fisiología , Vigilia/fisiología , Adolescente , Adulto , Factores de Edad , Niño , Femenino , Humanos , Masculino , Adulto Joven
13.
Telemed J E Health ; 24(2): 145-154, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28771398

RESUMEN

INTRODUCTION: This article describes an enhanced telepresence robot named ROBIN, part of a telecare system derived from the GIRAFFPLUS project for supporting and monitoring older adults at home. ROBIN is integrated in a sensor-rich environment that aims to continuously monitor physical and psychological wellbeing of older persons living alone. The caregivers (formal/informal) can communicate through it with their assisted persons. Long-term trials in real houses highlighted several user requirements that inspired improvements on the robotic platform. The enhanced telepresence robot was assessed by users to test its suitability to support social interaction and provide motivational feedback on health-related aspects. METHODS: Twenty-five users (n = 25) assessed the new multimodal interaction capabilities and new communication services. A psychophysiological approach was adopted to investigate aspects like engagement, usability, and affective impact, as well as the possible role of individual differences on the quality of human-robot interaction. RESULTS: ROBIN was overall judged usable, the interaction with/through it resulted pleasant and the required workload was limited, thus supporting the idea of using it as a central component for remote assistance and social participation. Open-minded users tended to have a more positive interaction with it. CONCLUSIONS: This work describes an enabling technology for remote assistance and social communication. It highlights the importance of being compliant with users' needs to develop solutions easy to use and able to foster their social connections. The role of personality appeared to be relevant for the interaction, underscoring a clear role of the service personalization.


Asunto(s)
Monitoreo Ambulatorio/métodos , Robótica , Dispositivos de Autoayuda , Participación Social , Telemedicina/métodos , Adulto , Comunicación , Femenino , Gestos , Servicios de Atención de Salud a Domicilio , Humanos , Relaciones Interpersonales , Masculino , Persona de Mediana Edad , Sistemas Recordatorios , Telemetría , Interfaz Usuario-Computador
14.
J Neurosci ; 35(11): 4487-500, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788668

RESUMEN

Recent work has demonstrated that behavioral manipulations targeting specific cortical areas during prolonged wakefulness lead to a region-specific homeostatic increase in theta activity (5-9 Hz), suggesting that theta waves could represent transient neuronal OFF periods (local sleep). In awake rats, the occurrence of an OFF period in a brain area relevant for behavior results in performance errors. Here we investigated the potential relationship between local sleep events and negative behavioral outcomes in humans. Volunteers participated in two prolonged wakefulness experiments (24 h), each including 12 h of practice with either a driving simulation (DS) game or a battery of tasks based on executive functions (EFs). Multiple high-density EEG recordings were obtained during each experiment, both in quiet rest conditions and during execution of two behavioral tests, a response inhibition test and a motor test, aimed at assessing changes in impulse control and visuomotor performance, respectively. In addition, fMRI examinations obtained at 12 h intervals were used to investigate changes in inter-regional connectivity. The EF experiment was associated with a reduced efficiency in impulse control, whereas DS led to a relative impairment in visuomotor control. A specific spatial and temporal correlation was observed between EEG theta waves occurring in task-related areas and deterioration of behavioral performance. The fMRI connectivity analysis indicated that performance impairment might partially depend on a breakdown in connectivity determined by a "network overload." Present results demonstrate the existence of an association between theta waves during wakefulness and performance errors and may contribute explaining behavioral impairments under conditions of sleep deprivation/restriction.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Privación de Sueño/diagnóstico , Ritmo Teta/fisiología , Vigilia/fisiología , Adulto , Electroencefalografía/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Estimulación Luminosa/métodos , Descanso/fisiología , Descanso/psicología , Privación de Sueño/psicología , Adulto Joven
15.
Neuroimage ; 129: 367-377, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26812659

RESUMEN

Learning leads to rapid microstructural changes in gray (GM) and white (WM) matter. Do these changes continue to accumulate if task training continues, and can they be reverted by sleep? We addressed these questions by combining structural and diffusion weighted MRI and high-density EEG in 16 subjects studied during the physiological sleep/wake cycle, after 12 h and 24 h of intense practice in two different tasks, and after post-training sleep. Compared to baseline wake, 12 h of training led to a decline in cortical mean diffusivity. The decrease became even more significant after 24 h of task practice combined with sleep deprivation. Prolonged practice also resulted in decreased ventricular volume and increased GM and WM subcortical volumes. All changes reverted after recovery sleep. Moreover, these structural alterations predicted cognitive performance at the individual level, suggesting that sleep's ability to counteract performance deficits is linked to its effects on the brain microstructure. The cellular mechanisms that account for the structural effects of sleep are unknown, but they may be linked to its role in promoting the production of cerebrospinal fluid and the decrease in synapse size and strength, as well as to its recently discovered ability to enhance the extracellular space and the clearance of brain metabolites.


Asunto(s)
Encéfalo/fisiopatología , Aprendizaje/fisiología , Privación de Sueño/fisiopatología , Sueño/fisiología , Vigilia , Imagen de Difusión por Resonancia Magnética , Electroencefalografía , Femenino , Sustancia Gris/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Sustancia Blanca/fisiopatología , Adulto Joven
16.
Hum Brain Mapp ; 36(10): 3832-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26138610

RESUMEN

How the human brain represents distinct motor features into a unique finalized action still remains undefined. Previous models proposed the distinct features of a motor act to be hierarchically organized in separated, but functionally interconnected, cortical areas. Here, we hypothesized that distinct patterns across a wide expanse of cortex may actually subserve a topographically organized coding of different categories of actions that represents, at a higher cognitive level and independently from the distinct motor features, the action and its final aim as a whole. Using functional magnetic resonance imaging and pattern classification approaches on the neural responses of 14 right-handed individuals passively watching short movies of hand-performed tool-mediated, transitive, and meaningful intransitive actions, we were able to discriminate with a high accuracy and characterize the category-specific response patterns. Actions are distinctively coded in distributed and overlapping neural responses within an action-selective network, comprising frontal, parietal, lateral occipital and ventrotemporal regions. This functional organization, that we named action topography, subserves a higher-level and more abstract representation of finalized actions and has the capacity to provide unique representations for multiple categories of actions.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Encéfalo/fisiología , Adulto , Cognición/fisiología , Femenino , Lateralidad Funcional , Mano , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Movimiento , Desempeño Psicomotor/fisiología
17.
Sleep Med Rev ; 74: 101908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417380

RESUMEN

Sleep is typically considered a state of disconnection from the environment, yet instances of external sensory stimuli influencing dreams have been reported for centuries. Explaining this phenomenon could provide valuable insight into dreams' generative and functional mechanisms, the factors that promote sleep continuity, and the processes that underlie conscious awareness. Moreover, harnessing sensory stimuli for dream engineering could benefit individuals suffering from dream-related alterations. This PRISMA-compliant systematic review assessed the current evidence concerning the influence of sensory stimulation on sleep mentation. We included 51 publications, of which 21 focused on auditory stimulation, ten on somatosensory stimulation, eight on olfactory stimulation, four on visual stimulation, two on vestibular stimulation, and one on multimodal stimulation. Furthermore, nine references explored conditioned associative stimulation: six focused on targeted memory reactivation protocols and three on targeted lucid reactivation protocols. The reported frequency of stimulus-dependent dream changes across studies ranged from 0 to ∼80%, likely reflecting a considerable heterogeneity of definitions and methodological approaches. Our findings highlight a lack of comprehensive understanding of the mechanisms, functions, and neurophysiological correlates of stimulus-dependent dream changes. We suggest that a paradigm shift is required for meaningful progress in this field.


Asunto(s)
Sueños , Sueño , Humanos , Sueños/fisiología , Cognición/fisiología , Estado de Conciencia/fisiología
18.
Sleep Med ; 113: 357-369, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113618

RESUMEN

INTRODUCTION: Studies using scalp EEG have shown that slow waves (0.5-4 Hz), the most prominent hallmark of NREM sleep, undergo relevant changes from childhood to adulthood, mirroring brain structural modifications and the acquisition of cognitive skills. Here we used simultaneous EEG-fMRI to investigate the cortical and subcortical correlates of slow waves in school-age children and determine their relative developmental changes. METHODS: We analyzed data from 14 school-age children with self-limited focal epilepsy of childhood who fell asleep during EEG-fMRI recordings. Brain regions associated with slow-wave occurrence were identified using a voxel-wise regression that also modelled interictal epileptic discharges and sleep spindles. At the group level, a mixed-effects linear model was used. The results were qualitatively compared with those obtained from 2 adolescents with epilepsy and 17 healthy adults. RESULTS: Slow waves were associated with hemodynamic-signal decreases in bilateral somatomotor areas. Such changes extended more posteriorly relative to those in adults. Moreover, the involvement of areas belonging to the default mode network changes as a function of age. No significant hemodynamic responses were observed in subcortical structures. However, we identified a significant correlation between age and thalamic hemodynamic changes. CONCLUSIONS: Present findings indicate that the somatomotor cortex may have a key role in slow-wave expression throughout the lifespan. At the same time, they are consistent with a posterior-to-anterior shift in slow-wave distribution mirroring brain maturational changes. Finally, our results suggest that slow-wave changes may not reflect only neocortical modifications but also the maturation of subcortical structures, including the thalamus.


Asunto(s)
Epilepsia , Imagen por Resonancia Magnética , Adulto , Niño , Adolescente , Humanos , Adulto Joven , Imagen por Resonancia Magnética/métodos , Sueño/fisiología , Electroencefalografía/métodos , Tálamo , Encéfalo
19.
Arch Ital Biol ; 151(3): 126-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24599630

RESUMEN

Physical exercise represents a eustress condition that promotes rapid coordinated adjustments in the immune, stress-related hormonal and cardiovascular systems, for maintaining homeostasis in response to increased metabolic demands. Compared to the tight multisystem coordination during exercise, evidence of between-systems cross talk in the early post exercise is still lacking. This study was aimed at identifying possible interactions between multiple systems following strenuous physical exercise (Ironman race) performed by twenty well-trained triathletes. Cardiac hemodynamics, left ventricle systolic and diastolic function and heart rate variability were measured along with plasma concentrations of immune messengers (cytokines and C-reactive protein) and stress-related hormones (catecholamines and cortisol) both 24h before and within 20 min after the race. Observed changes in antiinflammatory pathways, stress-related hormones and cardiovascular function were in line with previous findings; moreover, correlating parameters' changes (post versus pre-race) highlighted a dependence of cardiovascular function on the post-race biohumoral milieu: in particular, individual post-race variations of heart rate and diastolic function were strongly correlated with individual variations of anti-inflammatory cytokines, while individual baroreflex sensitivity changes were linked to IL-8 increase. Multiple correlations between anti-inflammatory cytokines and catecholamines were also found according with the autonomic regulation of immune function. Observed post-race cytokine and hormone levels were presumptively representative of the increases reached at the effort end while the cardiovascular parameters after the race were measured during the cardiovascular recovery; thus, results suggest that sustained strenuous exercise produced a stereotyped cardiovascular early recovery, whose speed could be conditioned by the immune and stress-related hormonal milieu.


Asunto(s)
Sistema Cardiovascular , Ejercicio Físico/fisiología , Hormonas/sangre , Sistema Inmunológico/fisiología , Estrés Fisiológico/inmunología , Estrés Fisiológico/fisiología , Adulto , Atletas , Presión Sanguínea , Catecolaminas/sangre , Citocinas/sangre , Electrocardiografía , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad
20.
Sci Rep ; 13(1): 1338, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693870

RESUMEN

Previous studies have identified several brain regions involved in the sympathetic response and its integration with pain, cognition, emotions and memory processes. However, little is known about how such regions dynamically interact during a sympathetic activation task. In this study, we analyzed EEG activity and effective connectivity during a cold pressor test (CPT). A source localization analysis identified a network of common active sources including the right precuneus (r-PCu), right and left precentral gyri (r-PCG, l-PCG), left premotor cortex (l-PMC) and left anterior cingulate cortex (l-ACC). We comprehensively analyzed the network dynamics by estimating power variation and causal interactions among the network regions through the direct directed transfer function (dDTF). A connectivity pattern dominated by interactions in [Formula: see text] (8-12) Hz band was observed in the resting state, with r-PCu acting as the main hub of information flow. After the CPT onset, we observed an abrupt suppression of such [Formula: see text]-band interactions, followed by a partial recovery towards the end of the task. On the other hand, an increase of [Formula: see text]-band (1-4) Hz interactions characterized the first part of CPT task. These results provide novel information on the brain dynamics induced by sympathetic stimuli. Our findings suggest that the observed suppression of [Formula: see text] and rise of [Formula: see text] dynamical interactions could reflect non-pain-specific arousal and attention-related response linked to stimulus' salience.


Asunto(s)
Encéfalo , Cognición , Humanos , Encéfalo/fisiología , Giro del Cíngulo , Mapeo Encefálico/métodos , Dolor , Electroencefalografía/métodos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA