Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Toxicol Appl Pharmacol ; 486: 116929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608961

RESUMEN

Atrazine (ATZ), a widely used herbicide with potent endocrine-disrupting properties, has been implicated in hormonal disturbances and fertility issues. Sertoli cells (SCs) play a crucial role in providing mechanical and nutritional support of spermatogenesis. Herein, we aimed to study the effects of environmentally relevant ATZ concentrations on the nutritional support of spermatogenesis provided by SCs. For that, mouse SCs (TM4) were exposed to increasing ATZ concentrations (in µg/L: 0.3, 3, 30, 300, or 3000). After 24 h, cellular proliferation and metabolic activity were assessed. Mitochondrial activity and endogenous reactive oxygen species (ROS) production were evaluated using JC-1 and CM-H2DCFDA probes, respectively. We also analyzed protein levels of lactate dehydrogenase (LDH) using Western Blot and live cells glycolytic function through Seahorse XF Glycolysis Stress Test Kit. ATZ exposure decreased the activity of oxidoreductases in SCs, suggesting a decreased metabolic activity. Although ATZ is reported to induce oxidative stress, we did not observe alterations in mitochondrial membrane potential and ROS production across all tested concentrations. When we evaluated the glycolytic function of SCs, we observed that ATZ significantly impaired glycolysis and the glycolytic capacity at all tested concentrations. These results were supported by the decreased expression of LDH in SCs. Overall, our findings suggest that ATZ impairs the glycolytic function of SCs through LDH downregulation. Since lactate is the preferential energetic substrate for germ cells, exposure to ATZ may detrimentally impact the nutritional support crucial for spermatogenesis, hinting for a relationship between ATZ exposure and male infertility.


Asunto(s)
Atrazina , Regulación hacia Abajo , Glucólisis , Herbicidas , L-Lactato Deshidrogenasa , Especies Reactivas de Oxígeno , Células de Sertoli , Animales , Masculino , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Atrazina/toxicidad , Ratones , Glucólisis/efectos de los fármacos , Herbicidas/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
2.
Reproduction ; 167(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019967

RESUMEN

In brief: Mitochondrial uncoupling proteins (UCPs) regulate mitochondrial activity and reactive oxygen species production through the transport of protons and metabolites. This study identified the expression of UCPs in human Sertoli cells, which proved to be modulators of their mitochondrial activity. Abstract: Mitochondrial uncoupling proteins (UCPs) are mitochondrial channels responsible for the transport of protons and small molecular substrates across the inner mitochondrial membrane. Altered UCP expression or function is commonly associated with mitochondrial dysfunction and increased oxidative stress, which are both known causes of male infertility. However, UCP expression and function in the human testis remain to be characterized. This study aimed to assess the UCP homologs (UCP1-6) expression and function in primary cultures of human Sertoli cells (hSCs). We identified the mRNA expression of all UCP homologs (UCP1-6) and protein expression of UCP1, UCP2, and UCP3 in hSCs. UCP inhibition by genipin for 24 h decreased hSCs proliferation without causing cytotoxicity (n = 6). Surprisingly, the prolonged UCP inhibition for 24 h decreased mitochondrial membrane potential, oxygen consumption rate (OCR), and endogenous reactive oxygen species (ROS) production. The metabolism of hSCs was also affected as UCP inhibition shifted their metabolism toward an increased pyruvate consumption. Taken together, these findings demonstrate that UCPs play a role as regulators of the mitochondrial function in hSCs, emphasizing their potential as targets in the study of male (in)fertility.


Asunto(s)
Canales Iónicos , Protones , Humanos , Masculino , Proteínas Desacopladoras Mitocondriales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células de Sertoli/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Testículo/metabolismo
3.
Exp Cell Res ; 431(2): 113744, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37648074

RESUMEN

Diabetic nephropathy (DN) and insulin resistance (IR) in kidney cells are considered main causes for end-stage renal failure. However, it is unclear how IR affects early stages of the disease. Here, we investigate the impact of mild (11 mM) and severe (22 mM) hyperglycemia, with and without induced IR, on cellular metabolism and mitochondrial bioenergetics in a human kidney cell line (HK-2). IR in HK-2 cells was induced with palmitic acid and cellular cytotoxicity was studied. We evaluated the impact of mild and severe hyperglycemia with and without IR on the metabolic secretome of the cells, their live-cell mitochondria function, mitochondrial membrane potential, and mitochondrial complex activities. Furthermore, we measured fatty acid oxidation and lipid accumulation. Cells cultured under mild hyperglycemic conditions exhibited increased mitochondrial bioenergetic parameters, such as basal respiration, ATP-linked production, maximal respiration capacity, and spare respiration capacity. However, these parameters decreased when cells were cultured under higher glucose concentrations when IR was induced. Our data suggests that progression from mild to severe hyperglycemia induces a metabolic shift, where gluconeogenic amino acids play a crucial role in supplying the energy requirements of HK-2. To our knowledge, this is the first study to evaluate the progression from mild to severe hyperglycemia allied to IR in human kidney cells. This work highlights that this progression leads to mitochondrial dysfunction and alters the metabolic profile of kidney cells. These results identify possible targets for early intervention in DN.


Asunto(s)
Nefropatías Diabéticas , Hiperglucemia , Resistencia a la Insulina , Humanos , Secretoma , Riñón
4.
Cell Mol Life Sci ; 79(12): 592, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378343

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is crucial for fluid homeodynamics throughout the male reproductive tract. Previous evidence shed light on a potential molecular partnership between this channel and aquaporins (AQPs). Herein, we explore the role of CFTR on AQPs-mediated glycerol permeability in mouse Sertoli cells (mSCs). We were able to identify the expression of CFTR, AQP3, AQP7, and AQP9 in mSCs by RT-PCR, Western blot, and immunofluorescence techniques. Cells were then treated with CFTRinh-172, a specific CFTR inhibitor, and its glycerol permeability was evaluated by stopped-flow light scattering. We observed that CFTR inhibition decreased glycerol permeability in mSCs by 30.6% when compared to the control group. A DUOLINK proximity ligation assay was used to evaluate the endogenous protein-protein interactions between CFTR and the various aquaglyceroporins we identified. We positively detected that CFTR is in close proximity with AQP3, AQP7, and AQP9 and that, through a possible physical interaction, CFTR can modulate AQP-mediated glycerol permeability in mSCs. As glycerol is essential for the control of the blood-testis barrier and elevated concentration in testis results in the disruption of spermatogenesis, we suggest that the malfunction of CFTR and the consequent alteration in glycerol permeability is a potential link between male infertility and cystic fibrosis.


Asunto(s)
Acuaporinas , Glicerol , Animales , Masculino , Ratones , Acuaporinas/genética , Acuaporinas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Glicerol/metabolismo , Permeabilidad , Células de Sertoli/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768282

RESUMEN

Infertility is becoming a chronic and emerging problem in the world. There is a resistant stigma that this health condition is mostly due to the female, although the literature supports that the responsibility for the onset of infertility is equally shared between both sexes in more or less equal proportions. Nevertheless, male sex hormones, particularly testosterone (T), are key players in male-related infertility. Indeed, hypogonadism, which is also characterized by changes in T levels, is one of the most common causes of male infertility and its incidence has been interconnected to the increased prevalence of metabolic diseases. Recent data also highlight the role of aquaporin (AQP)-mediated water and solute diffusion and the metabolic homeostasis in testicular cells suggesting a strong correlation between AQPs function, metabolism of testicular cells, and infertility. Indeed, recent studies showed that both metabolic and sexual hormone concentrations can change the expression pattern and function of AQPs. Herein, we review up-to-date information on the involvement of AQP-mediated function and permeability in men with metabolic syndrome and testosterone deficit, highlighting the putative mechanisms that show an interaction between sex hormones, AQPs, and metabolic syndrome that may contribute to male infertility.


Asunto(s)
Acuaporinas , Infertilidad Masculina , Síndrome Metabólico , Humanos , Masculino , Femenino , Acuaporinas/metabolismo , Fertilidad , Testosterona
6.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675195

RESUMEN

Obesity is associated with complex adipose tissue energy metabolism remodeling. Whether AT metabolic reprogramming differs according to body mass index (BMI) and across different obesity classes is unknown. This study's purpose was to evaluate and compare bioenergetics and energy substrate preference of visceral adipose tissue (VAT) pertaining to individuals with obesity class 2 and class 3. VAT obtained from patients with obesity (n = 15) class 2 (n = 7; BMI 37.53 ± 0.58 kg/m2) or class 3 (n = 8; BMI 47.79 ± 1.52 kg/m2) was used to assess oxygen consumption rate (OCR) bioenergetics and mitochondrial substrate preferences. VAT of patients with obesity class 3 presented significantly higher non-mitochondrial oxygen consumption (p < 0.05). In VAT of patients with obesity class 2, inhibition of pyruvate and glutamine metabolism significantly decreased maximal respiration and spare respiratory capacity (p < 0.05), while pyruvate and fatty acid metabolism inhibition, which renders glutamine the only available substrate, increased the proton leak with a protective role against oxidative stress (p < 0.05). In conclusion, VAT bioenergetics of patients with obesity class 2 depicts a greater dependence on glucose/pyruvate and glutamine metabolism, suggesting that patients within this BMI range are more likely to be responsive to interventions based on energetic substrate modulation for obesity treatment.


Asunto(s)
Glutamina , Grasa Intraabdominal , Humanos , Glutamina/metabolismo , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Metabolismo Energético , Piruvatos/metabolismo , Tejido Adiposo/metabolismo
7.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982784

RESUMEN

Metabolic reprogramming is a central hub in tumor development and progression. Therefore, several efforts have been developed to find improved therapeutic approaches targeting cancer cell metabolism. Recently, we identified the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz) as a PKCδ-selective activator with potent anti-proliferative activity in colon cancer by stimulating a PKCδ-dependent mitochondrial apoptotic pathway. Herein, we investigated whether the antitumor activity of Roy-Bz, in colon cancer, could be related to glucose metabolism interference. The results showed that Roy-Bz decreased the mitochondrial respiration in human colon HCT116 cancer cells, by reducing electron transfer chain complexes I/III. Consistently, this effect was associated with downregulation of the mitochondrial markers cytochrome c oxidase subunit 4 (COX4), voltage-dependent anion channel (VDAC) and mitochondrial import receptor subunit TOM20 homolog (TOM20), and upregulation of synthesis of cytochrome c oxidase 2 (SCO2). Roy-Bz also dropped glycolysis, decreasing the expression of critical glycolytic markers directly implicated in glucose metabolism such as glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4), and increasing TP53-induced glycolysis and apoptosis regulator (TIGAR) protein levels. These results were further corroborated in tumor xenografts of colon cancer. Altogether, using a PKCδ-selective activator, this work evidenced a potential dual role of PKCδ in tumor cell metabolism, resulting from the inhibition of both mitochondrial respiration and glycolysis. Additionally, it reinforces the antitumor therapeutic potential of Roy-Bz in colon cancer by targeting glucose metabolism.


Asunto(s)
Neoplasias del Colon , Complejo IV de Transporte de Electrones , Humanos , Línea Celular Tumoral , Neoplasias del Colon/patología , Complejo IV de Transporte de Electrones/metabolismo , Glucosa/metabolismo , Glucólisis , Respiración
8.
J Cell Physiol ; 236(7): 5265-5277, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368221

RESUMEN

The strong hormonal dysregulation associated with obesity is responsible for the disruption of several reproductive events. Sertoli cells (SCs) function is dependent on energetic homeostasis and thus, directly associated with energy homeostasis regulating hormones. To further understand the influence of those hormones with SCs function and obesity, we hypothesize that human SCs express obesity-related genes (ORG; MC4R, GNPDA2, TMEM18, and FTO) and that they respond to energy homeostasis regulating hormones (leptin, ghrelin, and glucagon-like protein 1 [GLP-1]) stimuli. To test our hypothesis, SCs were cultured with increasing doses of leptin (0, 5, 25, or 50 ng/ml, for 24 h), ghrelin (0, 20, 100, and 500 pM, for 24 h), and GLP-1 (10, 1000, or 1 × 105 pM, for 6 h). The presence and abundance of ORG transcripts and proteins in SCs were accessed by polymerase chain reaction techniques, Western blot analysis, and immunofluorescence staining. Our results show that human SCs express MC4R, GNPDA2, TMEM18, and FTO in specific cellular locations. MC4R and FTO expression in human SCs was not responsive to the treatments. However, GNPDA2 and TMEM18 expression increased after exposure to the highest concentration of leptin and ghrelin, respectively. We highlight for the first time that human SCs express ORG and that these are responsive to energy homeostasis hormonal stimuli. GNPDA2 and TMEM18 expression respond in opposite directions according to overall energy status, mediated by energy homeostasis regulating hormones. Leptin and ghrelin control of ORG expression by human SCs can be associated with overweight-related infertility and subfertility in males.


Asunto(s)
Metabolismo Energético/fisiología , Homeostasis/fisiología , Obesidad/metabolismo , Células de Sertoli/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Metabolismo Energético/efectos de los fármacos , Ghrelina/farmacología , Péptido 1 Similar al Glucagón/farmacología , Humanos , Leptina/farmacología , Masculino , Proteínas de la Membrana/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo
9.
Arch Biochem Biophys ; 679: 108222, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31816311

RESUMEN

Aquaporins (AQPs) are a family of transmembrane channel proteins responsible for the transport of water and small uncharged molecules. Thirteen distinct isoforms of AQPs have been identified in mammals (AQP0-12). Throughout the male reproductive tract, AQPs greatly enhance water transport across all biological barriers, providing a constant and expeditious movement of water and playing an active role in the regulation of water and ion homeostasis. This regulation of fluids is particularly important in the male reproductive tract, where proper fluid composition is directly linked with a healthy and competent spermatozoa production. For instance, in the testis, fluid regulation is essential for spermatogenesis and posterior spermatozoa transport into the epididymal ducts, while maintaining proper ionic conditions for their maturation and storage. Alterations in the expression pattern of AQPs or their dysfunction is linked with male subfertility/infertility. Thus, AQPs are important for male reproductive health. In this review, we will discuss the most recent data on the expression and function of the AQPs isoforms in the human, mouse and rat male reproductive tract. In addition, the regulation of AQPs expression and dysfunction linked with male infertility will be discussed.


Asunto(s)
Acuaporinas/genética , Acuaporinas/metabolismo , Fertilidad/genética , Regulación de la Expresión Génica , Infertilidad/genética , Infertilidad/metabolismo , Animales , Humanos , Infertilidad/fisiopatología , Masculino , Reproducción
10.
Cell Mol Life Sci ; 76(19): 3783-3800, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31165202

RESUMEN

In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3- and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3- membrane transporters (solute carrier 4-SLC4 and solute carrier 26-SLC26 family transporters), Na+-H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3- which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3- production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.


Asunto(s)
Genitales Masculinos/metabolismo , Concentración de Iones de Hidrógeno , Animales , Bicarbonatos/metabolismo , Anhidrasas Carbónicas/metabolismo , Fertilidad , Genitales Masculinos/química , Homeostasis , Humanos , Canales Iónicos/metabolismo , Bombas Iónicas/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
11.
Cell Tissue Res ; 378(2): 333-339, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31073907

RESUMEN

Lactate is a key metabolite for the normal occurrence of spermatogenesis. In the testis, lactate is produced by the Sertoli cells and transported to germline cells. Monocarboxylate transporters (MCTs) are key players in that process. Among the family of MCTs, MCT1 is at least partly responsible for lactate uptake by the germ cells. We aimed to perform a first assessment of the role of MCT1 in male reproductive potential. Mct1 conditional knockout (cKO) mice were used for morphometric evaluation, testicular morphology, and sperm parameter assessment. Serum steroid hormones levels were also measured. cKO animals showed a decrease in gonadosomatic index, testis weight, and seminiferous tubular diameters. Deletion of MCT1 also causes morphological changes in the organization of the seminiferous tubules and on Sertoli cell morphology. These changes resulted in failure of spermatogenesis with depletion of germ cells and total absence of spermatozoa. MCT1 cKO animals presented also hormonal dysregulation, with a decrease in serum 17ß-estradiol levels. In conclusion, MCT1 is pivotal for male reproductive potential. Absence of MCT1 results in maintenance of undifferentiated spermatogonia pool and compromised sperm production.


Asunto(s)
Fertilidad/fisiología , Transportadores de Ácidos Monocarboxílicos/fisiología , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Simportadores/fisiología , Animales , Estradiol/sangre , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Células de Sertoli/citología , Espermatozoides/citología , Simportadores/genética
12.
Eur J Nutr ; 58(7): 2961-2970, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31183510

RESUMEN

PURPOSE: L-Theanine is the major free amino acid present in tea (Camellia sinensis L.). The effects of several tea constituents on male reproduction have been investigated, but L-theanine has been overlooked. Sertoli cells (SCs) are essential for the physical and nutritional support of germ cells. In this study, we aimed to investigate the ability of L-theanine to modulate important mechanisms of human SCs (hSCs) metabolism, mitochondrial function and oxidative profile, which are essential to prevent or counteract spermatogenesis disruption in several health conditions. METHODS: We evaluated the effect of a dose of L-theanine attained by tea intake (5 µM) or a pharmacological dose (50 µM) on the metabolism (proton nuclear magnetic resonance and Western blot), mitochondrial functionality (protein expression of mitochondrial complexes and JC1 ratio) and oxidative profile (carbonyl levels, nitration and lipid peroxidation) of cultured hSCs. RESULTS: Exposure of hSCs to 50 µM of L-theanine increased cell proliferation and glucose consumption. In response to this metabolic adaptation, there was an increase in mitochondrial membrane potential, which may compromise the prooxidant-antioxidant balance. Still, no alterations were observed regarding the oxidative damages. CONCLUSIONS: A pharmacological dose of L-theanine (50 µM) prompts an increase in hSCs proliferation and a higher glucose metabolization to sustain the pool of Krebs cycle intermediates, which are crucial for cellular bioenergetics and biosynthesis. This study suggests an interplay between glycolysis and glutaminolysis in the regulation of hSCs metabolism.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glucosa/metabolismo , Glutamatos/farmacología , Glucólisis/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Células Cultivadas , Glucólisis/fisiología , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Células de Sertoli/fisiología
13.
Biol Cell ; 108(7): 179-88, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26888167

RESUMEN

BACKGROUND INFORMATION: Infertile men often present deregulation of serum estrogen levels. Notably, high levels of estradiol (E2) are associated with low sperm production and quality. Sertoli cells (SCs) are responsible for spermatogenesis maintenance and are major targets for the hormonal signalling that regulates this complex process. RESULTS: In this study, we used primary cultures of human SCs and studied the localisation, expression and functionality of the Na(+) -dependent HCO3 (-) transporters by confocal microscopy, immunoblot, epifluorescence and voltage clamp after 24 h of exposure to E2 (100 nM). All studied transporters were identified in human SCs. In E2-treated human SCs, there was an increase in NBCn1, NBCe1 and NDCBE protein levels, as well as an increase in intracellular pH and a decrease in transcellular transport. CONCLUSIONS: We report an association between increased levels of E2 and the expression/function of Na(+) -dependent HCO3 (-) transporters in human SCs. Our results provide new evidence on the mechanisms by which E2 can regulate SCs physiology and consequently spermatogenesis. These mechanisms may have an influence on male reproductive potential and help to explain male infertility conditions associated with estrogen deregulation. SIGNIFICANCE: Exposure to E2 increased human SCs intracellular pH. E2 is a modulator of ionic transcellular transport in human SCs.


Asunto(s)
Estradiol/farmacología , Fertilidad/efectos de los fármacos , Células de Sertoli/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Bicarbonatos/metabolismo , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , Masculino , Células de Sertoli/citología , Sodio/metabolismo
14.
Int J Mol Sci ; 17(7)2016 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-27409609

RESUMEN

Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field.


Asunto(s)
Acuaporinas/metabolismo , Hepatocitos/metabolismo , Células de Sertoli/metabolismo , Metabolismo Energético , Hepatocitos/citología , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Especies Reactivas de Oxígeno/metabolismo , Células de Sertoli/citología
15.
Mol Cell Biochem ; 408(1-2): 47-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26100313

RESUMEN

The formation of competent spermatozoa is a complex event that depends on the establishment of adequate environments throughout the male reproductive tract. Bicarbonate is essential not only to ionic homeostasis but also to pH maintenance along the male reproductive tract. Previous studies support an association of high 17ß-estradiol (E2) levels with modulation of specific ion transporters expression. Herein we determined the effect of E2 on the expression/functionality of SLC4 family bicarbonate transporters in rat Sertoli cells (SCs). All studied transporters [anion exchanger 2 (AE2), Na(+)-driven Cl(-)/HCO3 (-) exchanger (NDCBE), electrogenic Na(+)/HCO3 (-) co-transporters (NBCe1), and electroneutral Na(+)/HCO3 (-) co-transporters (NBCn1)] were identified in SCs, being AE2 and NBCn1 the most abundant. In E2-treated cells (100 nM), increases in AE2 and NBCn1 protein levels were observed, as well as altered transcellular transport. E2-treated SCs presented a significant perturbation of ATP-induced short-circuit current. This alteration was concurrent with augmented AE2 and NBCn1 levels. Overall, we report a relation between increased E2 levels and the expression/function of AE2 and NBCn1 in rat SCs, providing new evidence on the mechanisms by which E2 can regulate SCs physiology and consequently spermatogenesis, with direct influence on male reproductive potential.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Células de Sertoli/efectos de los fármacos , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Células de Sertoli/metabolismo , Simportadores de Sodio-Bicarbonato/genética
16.
Biochem Biophys Res Commun ; 446(4): 1017-21, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24657265

RESUMEN

Sertoli cells (SCs) form the blood-testis barrier (BTB) that controls the microenvironment where the germ cells develop. The cystic fibrosis transmembrane conductance regulator (CFTR) plays an essential role to male fertility and it was recently suggested that it may promote water transport. Interestingly, Aquaporin-4 (AQP4) is widely expressed in blood barriers, but was never identified in SCs. Herein we hypothesized that SCs express CFTR and AQP4 and that they can physically interact. Primary SCs cultures from 20-day-old rats were maintained and CFTR and AQP4 mRNA and protein expression was assessed by RT-PCR and Western blot, respectively. The possible physical interaction between CFTR and AQP4 was studied by co-immunoprecipitation. We were able to confirm the presence of CFTR at mRNA and protein level in cultured rat SCs. AQP4 mRNA analysis showed that cultured rat SCs express the transcript variant c of AQP4, which was followed by immunodetection of the correspondent protein. The co-immunoprecipitation experiments showed a direct interaction between AQP4 and CFTR in cultured rat SCs. Our results suggest that CFTR physically interacts with AQP4 in rat SCs evidencing a possible mechanism by which CFTR can control water transport through BTB. The full enlightenment of this particular relation between CFTR and AQP4 may point towards possible therapeutic targets to counteract male subfertility/infertility in men with Cystic Fibrosis and mutations in CFTR gene, which are known to impair spermatogenesis due to defective water transport.


Asunto(s)
Acuaporina 4/análisis , Acuaporina 4/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/análisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células de Sertoli/metabolismo , Animales , Acuaporina 4/genética , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Masculino , Mapeo de Interacción de Proteínas , ARN Mensajero/genética , Ratas , Ratas Wistar
17.
Biol Reprod ; 91(1): 11, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24876406

RESUMEN

The maintenance of pH homeostasis in the male reproductive tract is kept through the involvement of several mechanisms, among which is included the transmembranous movement of H(+) ions. Na(+)-H(+) exchangers (SLC9, solute carrier 9 family members) are among the membrane transporters known to participate in intracellular and extracellular pH regulation but also have important roles in salt and water absorption across epithelia and in the regulation of cell volume. The presence of several Na(+)-H(+) exchangers has been reported in the male reproductive tract. Their involvement in the processes that ensure the correct pursuance of the spermatogenetic event and spermatozoa maturation has been suggested. Indeed, the formation of mature spermatozoa is highly dependent on the maintenance of adequate ductal luminal milieu pH and ionic balance. Perturbations in these processes result in reduced male reproductive potential and consequently male subfertility and/or infertility. Thus, it is imperative to understand H(+) transport dynamics in order to identify and counteract possible alterations associated with reduced male fertility caused by pathological conditions. Herein, we will discuss the expression pattern and physiological roles of SLC9 family members in the cells of the male reproductive tract as well as the molecular basis of H(+) transport and its involvement in male reproductive potential.


Asunto(s)
Fertilidad/fisiología , Genitales Masculinos/fisiología , Infertilidad Masculina/fisiopatología , Intercambiadores de Sodio-Hidrógeno/fisiología , Homeostasis/fisiología , Humanos , Masculino , Espermatogénesis/fisiología
18.
IUBMB Life ; 66(9): 639-44, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25270793

RESUMEN

Men with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are usually subfertile/infertile. Besides playing a role in Cl(-)/HCO3(-) transport, it has been proposed that CFTR interacts with water membrane transport systems, particularly aquaporins, to control seminiferous tubular secretion, which is regulated by the somatic Sertoli cells (SCs). As aquaporin-9 (AQP9) is highly expressed throughout the male reproductive tract, we hypothesized that it is also present in rat SCs and that it physically interacts with CFTR. To test this hypothesis, primary cultures of rat SCs were established, and expression of CFTR and AQP9 was assessed by RT-polymerase chain reactions (mRNA) and Western blot analysis (protein). A coimmunoprecipitation assay was used to evaluate the physical interaction between CFTR and AQP9. Our results show that CFTR and AQP9 are expressed in rat SCs. We were also able to detect a molecular interaction between CFTR and AQP9 in rat SCs. This is the first report describing the presence of AQP9, and its interaction with CFTR, in rat SCs. Moreover, our results provide evidence that CFTR is involved in water homeostasis of the seminiferous tubular secretion. These mechanisms may open new insights on therapeutic targets to counteract subfertility/infertility in men with cystic fibrosis and mutations in the CFTR gene.


Asunto(s)
Acuaporinas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Infertilidad Masculina/metabolismo , Células de Sertoli/metabolismo , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación , Infertilidad Masculina/genética , Masculino , Oligonucleótidos/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Gen Comp Endocrinol ; 201: 16-20, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24681226

RESUMEN

The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERß) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis.


Asunto(s)
Células Germinativas/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Western Blotting , Células Cultivadas , Expresión Génica , Células Germinativas/citología , Humanos , Técnicas para Inmunoenzimas , Masculino , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túbulos Seminíferos/citología , Células de Sertoli/citología , Espermatogénesis
20.
J Membr Biol ; 246(12): 877-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24105628

RESUMEN

The formation of competent spermatozoa is a complex event that depends on the establishment of adequate environments throughout the male reproductive tract. This includes the control of bicarbonate (HCO3⁻) concentration, which plays an essential role in the maintenance of extracellular and intracellular pH (pH(i)) values. Diabetes mellitus alters pHi regulation in mammalian cells, mainly by altering the activity of ion transporters, particularly HCO3⁻-dependent mechanisms. Yet, little is known about the effects of this pathology and its prodromal stage, prediabetes, on the membrane transport mechanisms of male reproductive tract cells. Herein, we analyzed protein and mRNA levels of the most relevant HCO3⁻ transporters of the SLC4 family [anion exchanger 2 (AE2), Na⁺-driven Cl⁻/HCO3⁻ exchanger (NDCBE), electrogenic Na⁺/HCO3⁻ cotransporter 1 (NBCe1), electroneutral Na⁺/HCO3⁻ cotransporter 1 (NBCn1)] in the testis and epididymis of a prediabetic animal model. Firstly, we identified the HCO3⁻ transporters of the SLC4 family, in both testicular and epididymal tissue. Secondly, although no alterations were detected in protein expression, mRNA levels of NBCe1, NBCn1 and NDCBE were significantly increased in the testis of prediabetic rats. On the other hand, in the epididymis, prediabetes caused an increase of AE2 and a decrease of NDCBE protein levels. These alterations may be translated into changes of HCO3⁻ transepithelial epididymal fluxes in vivo, which may represent a threat for sperm survival. Moreover, these results provide evidence of the molecular mechanism that may be responsible for the significant increase in abnormal sperm morphology already reported in prediabetic rats.


Asunto(s)
Epidídimo/metabolismo , Estado Prediabético/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Testículo/metabolismo , Animales , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo , Regulación de la Expresión Génica , Masculino , Estado Prediabético/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Simportadores de Sodio-Bicarbonato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA