Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35358427

RESUMEN

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Asunto(s)
Células Endoteliales , Células Endoteliales/metabolismo , Ganglios Linfáticos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma , Factores de Transcripción/metabolismo
2.
Trends Biochem Sci ; 44(12): 1057-1075, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31610939

RESUMEN

Ubiquitination, a post-translational modification that involves a covalent attachment of ubiquitin to a protein substrate, is essential for cellular homeostatic maintenance. At the end of a three-enzyme cascade, E3 ubiquitin ligases (E3s) recruit substrates and promote or directly catalyze ubiquitin transfer to targets. These enzymes largely determine the specificity of the ubiquitination reaction. Genetic alteration, abnormal expression, or dysfunction of E3s account for the occurrence and progression of human cancers. Indeed, excessive degradation of relevant tumor-suppressor molecules and impaired disposal of oncogenic proteins have been linked to tumorigenesis. This review focuses on the emerging roles of HECT-type E3s in tumorigenesis, and emphasizes how perturbations of these enzymes contribute to cancer pathogenesis.


Asunto(s)
Carcinogénesis , Neoplasias , Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Biochem J ; 479(12): 1375-1392, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35748701

RESUMEN

The TP63 is an indispensable transcription factor for development and homeostasis of epithelia and its derived glandular tissue. It is also involved in female germline cell quality control, muscle and thymus development. It is expressed as multiple isoforms transcribed by two independent promoters, in addition to alternative splicing occurring at the mRNA 3'-UTR. Expression of the TP63 gene, specifically the amino-deleted p63 isoform, ΔNp63, is required to regulate numerous biological activities, including lineage specification, self-renewal capacity of epithelial stem cells, proliferation/expansion of basal keratinocytes, differentiation of stratified epithelia. In cancer, ΔNp63 is implicated in squamous cancers pathogenesis of different origin including skin, head and neck and lung and in sustaining self-renewal of cancer stem cells. How this transcription factor can control such a diverse set of biological pathways is central to the understanding of the molecular mechanisms through which p63 acquires oncogenic activity, profoundly changing its down-stream transcriptional signature. Here, we highlight how different proteins interacting with p63 allow it to regulate the transcription of several central genes. The interacting proteins include transcription factors/regulators, epigenetic modifiers, and post-transcriptional modifiers. Moreover, as p63 depends on its interactome, we discuss the hypothesis to target the protein interactors to directly affect p63 oncogenic activities and p63-related diseases.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Carcinoma de Células Escamosas/metabolismo , Diferenciación Celular/genética , Humanos , Queratinocitos , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 112(11): 3499-504, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25739959

RESUMEN

The predominant p63 isoform, ΔNp63, is a master regulator of normal epithelial stem cell (SC) maintenance. However, in vivo evidence of the regulation of cancer stem cell (CSC) properties by p63 is still limited. Here, we exploit the transgenic MMTV-ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) mouse model of carcinogenesis to dissect the role of p63 in the regulation of mammary CSC self-renewal and breast tumorigenesis. ErbB2 tumor cells enriched for SC-like properties display increased levels of ΔNp63 expression compared with normal mammary progenitors. Down-regulation of p63 in ErbB2 mammospheres markedly restricts self-renewal and expansion of CSCs, and this action is fully independent of p53. Furthermore, transplantation of ErbB2 progenitors expressing shRNAs against p63 into the mammary fat pads of syngeneic mice delays tumor growth in vivo. p63 knockdown in ErbB2 progenitors diminishes the expression of genes encoding components of the Sonic Hedgehog (Hh) signaling pathway, a driver of mammary SC self-renewal. Remarkably, p63 regulates the expression of Sonic Hedgehog (Shh), GLI family zinc finger 2 (Gli2), and Patched1 (Ptch1) genes by directly binding to their gene regulatory regions, and eventually contributes to pathway activation. Collectively, these studies highlight the importance of p63 in maintaining the self-renewal potential of mammary CSCs via a positive modulation of the Hh signaling pathway.


Asunto(s)
Proteínas Hedgehog/metabolismo , Glándulas Mamarias Animales/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Animales , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos C57BL , Fosfoproteínas/genética , Receptor ErbB-2/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transcripción Genética
5.
Hum Mutat ; 35(6): 702-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24488880

RESUMEN

In mammals, the p53 family comprises two additional members, p63 and p73 (hereafter referred to as TP53, TP63, and TP73, respectively). The usage of two alternative promoters produces protein variants either with (transactivating [TA] isoforms) or without (ΔN isoforms) the N-terminal transactivation domain (TAD). In general, the TA proteins exert TP53-like tumor-suppressive activities through their ability to activate a common set of target genes. The ΔN proteins can act as dominant-negative inhibitors of the transcriptionally active family members. Additionally, they possess intrinsic-specific biological activities due to the presence of alternative TADs, and as a result of engaging a different set of regulators. This review summarizes the current understanding of upstream regulators and downstream effectors of the TP53 family proteins, with particular emphasis on those that are relevant for their role in tumorigenesis. Furthermore, we highlight the existence of networks and cross-talks among the TP53 family members, their modulators, as well as the transcriptional targets.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Animales , Humanos , MicroARNs/genética , Regiones Promotoras Genéticas , Proteína Tumoral p73 , Ubiquitinación
6.
Proc Natl Acad Sci U S A ; 107(42): 18061-6, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20921405

RESUMEN

NF-κB is a key transcription factor involved in the regulation of T-cell activation and proliferation upon engagement of the T-cell receptor (TCR). T cells that lack the IκB kinase (IKKß) are unable to activate NF-κB, and rapidly undergo apoptosis upon activation. NF-κB activation following T-cell receptor engagement induces the expression of Mdm2 through interaction with NF-κB sites in its P1 promoter, and enforced expression of Mdm2 protected T cells deficient for NF-κB activation from activation-induced cell death. In T cells with intact NF-κB signaling, ablation or pharmacologic inhibition of Mdm2 resulted in activation-induced apoptosis. Mdm2 coprecipitates with p73 in activated T cells, and apoptosis induced by inhibition of Mdm2 was p73-dependent. Further, Bim was identified as a p73 target gene required for cell death induced by Mdm2 inhibition, and a p73-responsive element in intron 1 of Bim was characterized. Our results demonstrate a pathway for survival of activated T cells through NF-κB-induced Mdm2, which blocks Bim-dependent apoptosis through binding and inhibition of p73.


Asunto(s)
Apoptosis/fisiología , Proteínas de Unión al ADN/fisiología , Activación de Linfocitos/fisiología , FN-kappa B/fisiología , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas c-mdm2/biosíntesis , Linfocitos T/metabolismo , Proteínas Supresoras de Tumor/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Linfocitos T/citología , Proteína Tumoral p73
7.
Cell Death Discov ; 9(1): 365, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783677

RESUMEN

Here, we present the case of a 47-year-old woman diagnosed with luminal B breast cancer subtype and provide an in-depth analysis of her gene mutations, chromosomal alterations, mRNA and protein expression changes. We found a point mutation in the FGFR2 gene, which is potentially hyper-activating the receptor function, along with over-expression of its ligand FGF20 due to genomic amplification. The patient also harbors somatic and germline mutations in some mismatch repair (MMR) genes, with a strong MMR mutational signature. The patient displays high microsatellite instability (MSI) and tumor mutational burden (TMB) status and increased levels of CTLA-4 and PD-1 expression. Altogether, these data strongly implicate that aberrant FGFR signaling, and defective MMR system might be involved in the development of this breast tumor. In addition, high MSI and TMB in the context of CTLA-4 and PD-L1 positivity, suggest the potential benefit of immune checkpoint inhibitors. Accurate characterization of molecular subtypes, based on gene mutational and expression profiling analyses, will be certainly helpful for individualized treatment and targeted therapy of breast cancer patients, especially for those subtypes with adverse outcome.

8.
Oncogene ; 42(46): 3371-3384, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37848625

RESUMEN

Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.


Asunto(s)
Neoplasias , Proteínas Supresoras de Tumor , Humanos , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epitelio/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Fosfoproteínas/genética
9.
Biol Direct ; 18(1): 82, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041107

RESUMEN

The uc.291 transcript controls keratinocytes differentiation by physical interaction with ACTL6A and subsequent induction of transcription of the genes belonging to the epidermal differentiation complex (EDC). Uc.291 is also implicated in the dedifferentiation phenotype seen in poorly differentiated cutaneous squamous cell carcinomas. Here, we would like to investigate the contribution of uc.291 to the unbalanced differentiation state of keratinocytes observed in hyperproliferative skin disorders, e. g., psoriasis. Psoriasis is a multifactorial inflammatory disease, caused by alteration of keratinocytes homeostasis. The imbalanced differentiation state, triggered by the infiltration of immune cells, represents one of the events responsible for this pathology. In the present work, we explore the role of uc.291 and its interactor ACTL6A in psoriasis skin, using quantitative real-time PCR (RT-qPCR), immunohistochemistry and bioinformatic analysis of publicly available datasets. Our data suggest that the expression of the uc.291 and of EDC genes loricrin and filaggrin (LOR, FLG) is reduced in lesional skin compared to nonlesional skin of psoriatic patients; conversely, the mRNA and protein level of ACTL6A are up-regulated. Furthermore, we provide evidence that the expression of uc.291, FLG and LOR is reduced, while ACTL6A mRNA is up-regulated, in an in vitro psoriasis-like model obtained by treating differentiated keratinocytes with interleukin 22 (IL-22). Furthermore, analysis of a publicly available dataset of human epidermal keratinocytes treated with IL-22 (GSE7216) confirmed our in vitro results. Taken together, our data reveal a novel role of uc.291 and its functional axis with ACTL6A in psoriasis disorder and a proof of concept that biological inhibition of this molecular axis could have a potential pharmacological effect against psoriasis and, in general, in skin diseases with a suppressed differentiation programme.


Asunto(s)
Psoriasis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Piel/metabolismo , Piel/patología , Queratinocitos/metabolismo , Queratinocitos/patología , Psoriasis/genética , Psoriasis/metabolismo , ARN Mensajero/metabolismo , Actinas/metabolismo , Actinas/farmacología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN
10.
Biol Direct ; 18(1): 73, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946250

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is characterized by high proliferation and limited differentiation. The altered expression of the p53 family members, and specifically of p63, represents a pivotal event in the pathogenesis of HNSCC. Physiologically, p63 affects metabolism through the direct transactivation of the enzyme hexokinase 2, and subsequently controls the proliferation of epithelial cells; nonetheless, its role in cancer metabolism is still largely unclear. The high energetic demand of cancer and the consequent needs of a metabolic reshape, also involve the serine and glycine catabolic and anabolic pathways, including the one carbon metabolism (OCM), to produce energetic compounds (purines) and to maintain cellular homeostasis (glutathione and S-adenosylmethionine). RESULTS: The involvement in serine/glycine starvation by other p53 family members has been reported, including HNSCC. Here, we show that in HNSCC p63 controls the expression of the enzymes regulating the serine biosynthesis and one carbon metabolism. p63 binds the promoter region of genes involved in the serine biosynthesis as well as in the one carbon metabolism. p63 silencing in a HNSCC cell line affects the mRNA and protein levels of these selected enzymes. Moreover, the higher expression of TP63 and its target enzymes, negatively impacts on the overall survival of HNSCC patients. CONCLUSION: These data indicate a direct role of p63 in the metabolic regulation of HNSCC with significant clinical effects.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , Glicina/genética , Glicina/metabolismo , Carbono , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
11.
Biol Direct ; 18(1): 40, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464416

RESUMEN

Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.


Asunto(s)
Inflamación , Células Madre Mesenquimatosas , Anciano , Humanos , Inflamación/terapia , Diferenciación Celular/fisiología
12.
Cell Death Discov ; 9(1): 370, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813891

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.

13.
Cell Death Dis ; 14(10): 691, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863894

RESUMEN

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patología , Aterosclerosis/patología , Macrófagos/metabolismo , Apoptosis , Infarto del Miocardio/metabolismo
14.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100955

RESUMEN

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Asunto(s)
Apoptosis , Caspasas , Animales , Humanos , Apoptosis/genética , Muerte Celular , Caspasas/genética , Caspasas/metabolismo , Carcinogénesis , Mamíferos/metabolismo
15.
Discov Oncol ; 12(1): 39, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-35201500

RESUMEN

Ubiquitination-mediated proteolysis or regulation of proteins, ultimately executed by E3 ubiquitin ligases, control a wide array of cellular processes, including transcription, cell cycle, autophagy and apoptotic cell death. HECT-type E3 ubiquitin ligases can be distinguished from other subfamilies of E3 ubiquitin ligases because they have a C-terminal HECT domain that directly catalyzes the covalent attachment of ubiquitin to their substrate proteins. Deregulation of HECT-type E3-mediated ubiquitination plays a prominent role in cancer development and chemoresistance. Several members of this subfamily are indeed frequently deregulated in human cancers as a result of genetic mutations and altered expression or activity. HECT-type E3s contribute to tumorigenesis by regulating the ubiquitination rate of substrates that function as either tumour suppressors or oncogenes. While the pathological roles of the HECT family members in solid tumors are quite well established, their contribution to the pathogenesis of hematological malignancies has only recently emerged. This review aims to provide a comprehensive overview of the involvement of the HECT-type E3s in leukemogenesis.

16.
J Exp Med ; 199(11): 1545-57, 2004 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15184504

RESUMEN

p73 has been identified recently as a structural and functional homologue of the tumor suppressor p53. Here, we report that p73 stability is directly regulated by the ubiquitin-proteasome pathway. Furthermore, we show that the promyelocytic leukemia (PML) protein modulates p73 half-life by inhibiting its degradation in a PML-nuclear body (NB)-dependent manner. p38 mitogen-activated protein kinase-mediated phosphorylation of p73 is required for p73 recruitment into the PML-NB and subsequent PML-dependent p73 stabilization. We find that p300-mediated acetylation of p73 protects it against ubiquitinylation and that PML regulates p73 stability by positively modulating its acetylation levels. As a result, PML potentiates p73 transcriptional and proapoptotic activities that are markedly impaired in Pml-/- primary cells. Our findings demonstrate that PML plays a crucial role in modulating p73 function, thus providing further insights on the molecular network for tumor suppression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/fisiología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Ubiquitina/metabolismo , Acetilación , Células Cultivadas , Genes Supresores de Tumor , Humanos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteína de la Leucemia Promielocítica , Receptores de Ácido Retinoico/fisiología , Receptor alfa de Ácido Retinoico , Transactivadores/fisiología , Proteína Tumoral p73 , Proteínas Supresoras de Tumor , Proteínas Quinasas p38 Activadas por Mitógenos
17.
Biochem Biophys Res Commun ; 402(2): 425-30, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20951678

RESUMEN

The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and tumorigenesis through the regulation of epithelial progenitor cell proliferation, differentiation and apoptosis. Similarly to p53, p63 activity is regulated by post-translational modifications, including ubiquitylation. Here, we report that the WWP1 E3 ubiquitin ligase binds specifically to ΔNp63 isoform but it does not trigger ΔNp63 proteasome-dependent degradation. Accordingly, we found that WWP1-dependent ubiquitylation of ΔNp63 occurs through the formation of Lys63-linked poly-ubiquitin chains. Importantly, we found that WWP1 is able to increase ΔNp63-dependent transcription and depletion of WWP1 in human primary keratinocytes induces cell cycle arrest. All together these results indicate that WWP1 regulates ΔNp63 transcriptional activity, acting thus as a potential regulator of the proliferation and survival of epithelial-derived cells.


Asunto(s)
Lisina/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclo Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Lisina/genética , Poliubiquitina/metabolismo , Estabilidad Proteica , Factores de Transcripción , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
18.
Cancers (Basel) ; 12(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560247

RESUMEN

The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs.

19.
Cells ; 9(5)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438775

RESUMEN

Trastuzumab emtansine (T-DM1) is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugated to the microtubule-targeting agent emtansine (DM1). T-DM1 is an effective agent in the treatment of patients with HER2-positive breast cancer whose disease has progressed on the first-line trastuzumab containing chemotherapy. However, both primary and acquired tumour resistance limit its efficacy. Increased levels of the phosphorylated form of Translationally Controlled Tumour Protein (phospho-TCTP) have been shown to be associated with a poor clinical response to trastuzumab therapy in HER2-positive breast cancer. Here we show that phospho-TCTP is essential for correct mitosis in human mammary epithelial cells. Reduction of phospho-TCTP levels by dihydroartemisinin (DHA) causes mitotic aberration and increases microtubule density in the trastuzumab-resistant breast cancer cells HCC1954 and HCC1569. Combinatorial studies show that T-DM1 when combined with DHA is more effective in killing breast cells compared to the effect induced by any single agent. In an orthotopic breast cancer xenograft model (HCC1954), the growth of the tumour cells resumes after having achieved a complete response to T-DM1 treatment. Conversely, DHA and T-DM1 treatment induces a severe and irreversible cytotoxic effect, even after treatment interruption, thus, improving the long-term efficacy of T-DM1. These results suggest that DHA increases the effect of T-DM1 as poison for microtubules and supports the clinical development of the combination of DHA and T-DM1 for the treatment of aggressive HER2-overexpressing breast cancer.


Asunto(s)
Artemisininas/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Microtúbulos/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN , Femenino , Humanos , Ratones SCID , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Trastuzumab/farmacología , Proteína Tumoral Controlada Traslacionalmente 1
20.
Mol Oncol ; 13(10): 2033-2048, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31441992

RESUMEN

Autophagy is a conserved self-eating process that delivers cytoplasmic material to the lysosome to allow degradation of intracellular components, including soluble, unfolded and aggregated proteins, damaged organelles, and invading microorganisms. Autophagy provides a homeostatic control mechanism and is essential for balancing sources of energy in response to nutrient stress. Autophagic dysfunction or dysregulation has been implicated in several human pathologies, including cancer and neurodegeneration, and its modulation has substantial potential as a therapeutic strategy. Given the relevant clinical and therapeutic implications of autophagy, there is emerging intense interest in the identification of the key factors regulating the components of the autophagic machinery. Various post-translational modifications, including ubiquitylation, have been implicated in autophagy control. The list of the E3 ubiquitin protein ligases involved in the regulation of several steps of the autophagic process is continuously growing. In this review, we will focus on recent advances in the understanding of the role of the homologous to the E6AP carboxyl terminus-type E3 ubiquitin ligases in autophagy control.


Asunto(s)
Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA