Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endod ; 50(1): 74-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37863353

RESUMEN

AIM: The objective of this study was to develop nanostructured gels as biocompatible intracanal disinfectants by one-step microwave radiation-assisted synthesis. METHODS: Polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as a support network, and polyethylene glycol (PEG) was used as a reducing agent. The gels were characterized by measuring the swelling ratio (SR) and rheological properties and by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The antibacterial effects of each gel were evaluated against the endodontic clinical strain Enterococcus faecalis. Then, the viability of the 21-day mature multispecies bacterial biofilm was assessed using confocal microscopy in an ex vivo model, where the biofilm was exposed to the mix of nanogels. The cell proliferation, viability, and morphology of human periodontal ligament (HPDL) cells were quantified using a real-time IncuCyte® S3 Live-Cell System. Viability was measured by confocal microscopy using an ex vivo model exposing a 21-day mature multispecies bacterial biofilm to the mix of nanogels. RESULTS: The antibacterial activity of the gels coincided with the superficial characterization and the solubility of the gel in the growth medium. Gels with higher viscosity (327.85-980.58 Pa s), higher dissolution (42-70%SR), and lower porosity (no porosity and 611.63 nm) showed excellent antibacterial activity against E. faecalis. Despite their physicochemical characteristics, CuNPs gels showed greater effectiveness against E. faecalis.These nanostructured gels with high PVA concentrations promote HPDL cells proliferation while still exerting antibacterial properties. Mix of nanogels showed an increase non-viable cells biomass from at of application. CONCLUSIONS: The use of biocompatible polymers influences the physicochemical, bactericidal, and cytotoxic response, making these materials potential disinfectant agents against resistant bacteria with good biocompatibility and improved HPDL cells proliferation.


Asunto(s)
Desinfectantes , Nanoestructuras , Humanos , Desinfectantes/farmacología , Nanogeles , Antibacterianos/farmacología , Geles/farmacología , Enterococcus faecalis , Biopelículas
2.
Membranes (Basel) ; 13(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504982

RESUMEN

Modification of thin-film composite (TFC) nanofiltration (NF) membranes to increase permeability and improve separation performance remains a significant challenge for water scarcity. This study aimed to enhance the permeability and selectivity of two commercial polyamide (PA) NF membranes, NF90 and NF270, by modifying them with carbon nanotubes (CNTs) using microwave (MW)-assisted in-situ growth. The conducting polymer, polypyrrole (Ppy), and a ferrocene catalyst were used to facilitate the growth process. Chemical and morphological analyses confirmed that the surface of both membranes was modified. The NF270-Ppy-CNT membrane was selected for ion rejection testing due to its superior permeability compared to the NF90-Ppy-CNT. The modified NF270 membrane showed a 14% increase in ion rejection while maintaining constant water permeability. The results demonstrated that it is feasible to attach CNTs to a polymeric surface without compromising its functional properties. The Spliegler-Kedem model was employed to model the rejection and permeate flux of NF270-Ppy-CNT and NF270 membranes, which indicated that diffusive transport contributes to the modification to increase NaCl rejection. The present study provides a promising approach for modifying membranes by in-situ CNT growth to improve their performance in water treatment applications, such as desalination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA