Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593898

RESUMEN

Tethered photoswitches are molecules with two photo-dependent isomeric forms, each with different actions on their biological targets. They include reactive chemical groups capable of covalently binding to their target. Our aim was to develop a ß-subunit-tethered propofol photoswitch (MAP20), as a tool to better study the mechanism of anesthesia through the GABAA α1ß3γ2 receptor. We used short spacers between the tether (methanethiosulfonate), the photosensitive moiety (azobenzene), and the ligand (propofol), to allow a precise tethering adjacent to the putative propofol binding site at the ß+α- interface of the receptor transmembrane helices (TMs). First, we used molecular modeling to identify possible tethering sites in ß3TM3 and α1TM1, and then introduced cysteines in the candidate positions. Two mutant subunits [ß3(M283C) and α1(V227C)] showed photomodulation of GABA responses after incubation with MAP20 and illumination with lights at specific wavelengths. The α1ß3(M283C)γ2 receptor showed the greatest photomodulation, which decreased as GABA concentration increased. The location of the mutations that produced photomodulation confirmed that the propofol binding site is located in the ß+α- interface close to the extracellular side of the transmembrane helices. Tethering the photoswitch to cysteines introduced in the positions homologous to ß3M283 in two other subunits (α1W288 and γ2L298) also produced photomodulation, which was not entirely reversible, probably reflecting the different nature of each interface. The results are in agreement with a binding site in the ß+α- interface for the anesthetic propofol.


Asunto(s)
Anestésicos Intravenosos/farmacología , Membrana Celular/metabolismo , Luz , Oocitos/metabolismo , Propofol/farmacología , Receptores de GABA-A/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de la radiación , Humanos , Oocitos/efectos de los fármacos , Oocitos/efectos de la radiación , Conformación Proteica , Dominios Proteicos , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/efectos de la radiación , Xenopus laevis , Ácido gamma-Aminobutírico
2.
Proc Natl Acad Sci U S A ; 116(31): 15706-15715, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308218

RESUMEN

Intravenous anesthetic agents are associated with cardiovascular instability and poorly tolerated in patients with cardiovascular disease, trauma, or acute systemic illness. We hypothesized that a new class of intravenous (IV) anesthetic molecules that is highly selective for the slow type of γ-aminobutyric acid type A receptor (GABAAR) could have potent anesthetic efficacy with limited cardiovascular effects. Through in silico screening using our GABAAR model, we identified a class of lead compounds that are N-arylpyrrole derivatives. Electrophysiological analyses using both an in vitro expression system and intact rodent hippocampal brain slice recordings demonstrate a GABAAR-mediated mechanism. In vivo experiments also demonstrate overt anesthetic activity in both tadpoles and rats with a potency slightly greater than that of propofol. Unlike the clinically approved GABAergic anesthetic etomidate, the chemical structure of our N-arylpyrrole derivative is devoid of the chemical moieties producing adrenal suppression. Our class of compounds also shows minimal to no suppression of blood pressure, in marked contrast to the hemodynamic effects of propofol. These compounds are derived from chemical structures not previously associated with anesthesia and demonstrate that selective targeting of GABAAR-slow subtypes may eliminate the hemodynamic side effects associated with conventional IV anesthetics.


Asunto(s)
Anestésicos , Agonistas de Receptores de GABA-A , Pirroles , Receptores de GABA-A/metabolismo , Anestésicos/química , Anestésicos/farmacología , Animales , Evaluación Preclínica de Medicamentos , Etomidato/química , Etomidato/farmacología , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacología , Humanos , Ratones , Pirroles/química , Pirroles/farmacología , Ratas , Receptores de GABA-A/genética , Xenopus laevis
3.
Anesth Analg ; 130(1): e1-e4, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198930

RESUMEN

The understanding of anesthetic side effects on the heart has been hindered by the lack of sophisticated clinical models. Using micropatterned human-induced pluripotent stem cell-derived cardiomyocytes, we obtained cardiac muscle depressant profiles for propofol, etomidate, and our newly identified anesthetic compound KSEB01-S2. Propofol was the strongest depressant among the 3 compounds tested, exhibiting the largest decrease in contraction velocity, depression rate, and beating frequency. Interestingly, KSEB01-S2 behaved similarly to etomidate, suggesting a better cardiac safety profile. Our results provide a proof-of-concept for using human-induced pluripotent stem cell-derived cardiomyocytes as an in vitro platform for future drug design.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Etomidato/toxicidad , Cardiopatías/inducido químicamente , Frecuencia Cardíaca/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Propofol/toxicidad , Adulto , Cardiotoxicidad , Línea Celular , Femenino , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/patología , Prueba de Estudio Conceptual , Medición de Riesgo , Factores de Tiempo , Adulto Joven
4.
5.
Alcohol Clin Exp Res ; 38(3): 595-603, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24164436

RESUMEN

The molecular mechanism(s) of action of anesthetic, and especially, intoxicating doses of alcohol (ethanol [EtOH]) have been of interest even before the advent of the Research Society on Alcoholism. Recent physiological, genetic, and biochemical studies have pin-pointed molecular targets for anesthetics and EtOH in the brain as ligand-gated ion channel (LGIC) membrane proteins, especially the pentameric (5 subunit) Cys-loop superfamily of neurotransmitter receptors including nicotinic acetylcholine (nAChRs), GABAA (GABAA Rs), and glycine receptors (GlyRs). The ability to demonstrate molecular and structural elements of these proteins critical for the behavioral effects of these drugs on animals and humans provides convincing evidence for their role in the drugs' actions. Amino acid residues necessary for pharmacologically relevant allosteric modulation of LGIC function by anesthetics and EtOH have been identified in these channel proteins. Site-directed mutagenesis revealed potential allosteric modulatory sites in both the trans-membrane domain (TMD) and extracellular domain (ECD). Potential sites of action and binding have been deduced from homology modeling of other LGICs with structures known from crystallography and cryo-electron microscopy studies. Direct information about ligand binding in the TMD has been obtained by photoaffinity labeling, especially in GABAA Rs. Recent structural information from crystallized procaryotic (ELIC and GLIC) and eukaryotic (GluCl) LGICs allows refinement of the structural models including evaluation of possible sites of EtOH action.


Asunto(s)
Anestésicos/farmacología , Depresores del Sistema Nervioso Central/farmacología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/efectos de los fármacos , Etanol/farmacología , Modelos Moleculares , Secuencia de Aminoácidos , Anestésicos/metabolismo , Animales , Depresores del Sistema Nervioso Central/metabolismo , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Etanol/metabolismo , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Molecular
6.
Biophys J ; 105(3): 640-7, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931312

RESUMEN

Improving our understanding of the mechanisms and effects of anesthetics is a critically important part of neuroscience. The currently dominant theory is that anesthetics and similar molecules act by binding to Cys-loop receptors in the postsynaptic terminal of nerve cells and potentiate or inhibit their function. Although structures for some of the most important mammalian channels have still not been determined, a number of important results have been derived from work on homologous cationic channels in bacteria. However, partly due to the lack of a nervous system in bacteria, there are a number of questions about how these results relate to higher organisms. The recent determination of a structure of the eukaryotic chloride channel, GluCl, is an important step toward accurate modeling of mammalian channels, because it is more similar in function to human Cys-loop receptors such as GABAAR or GlyR. One potential issue with using GluCl to model other receptors is the presence of the large ligand ivermectin (IVM) positioned between all five subunits. Here, we have performed a series of microsecond molecular simulations to study how the dynamics and structure of GluCl change in the presence versus absence of IVM. When the ligand is removed, subunits move at least 2 Å closer to each other compared to simulations with IVM bound. In addition, the pore radius shrinks to 1.2 Å, all of which appears to support a model where IVM binding between subunits stabilizes an open state, and that the relaxed nonIVM conformations might be suitable for modeling other channels. Interestingly, the presence of IVM also has an effect on the structure of the important loop C located at the neurotransmitter-binding pocket, which might help shed light on its partial agonist behavior.


Asunto(s)
Canales de Cloruro/química , Ivermectina/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Animales , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Ivermectina/química , Ligandos , Macaca mulatta , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo
7.
Anesthesiology ; 119(5): 1087-95, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23770602

RESUMEN

BACKGROUND: Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). Although its molecular structure remains unknown, significant progress has been made toward understanding its interactions with anesthetics via molecular modeling. METHODS: The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and ß2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH-sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50s. RESULTS: Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between α and ß subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. CONCLUSION: Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed a correlation of ligand docking scores with experimentally measured GABAaR potentiation.


Asunto(s)
Anestésicos/metabolismo , Receptores de GABA/metabolismo , Algoritmos , Animales , Sitios de Unión , Canales de Cloruro/metabolismo , Cristalografía por Rayos X , Canales Iónicos/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Microscopía Electrónica , Modelos Moleculares , Estructura Secundaria de Proteína , Receptores de GABA/química , Receptores de GABA/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Moldes Genéticos , Torpedo
8.
PLoS Comput Biol ; 8(10): e1002710, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055913

RESUMEN

Cys-loop receptors constitute a superfamily of pentameric ligand-gated ion channels (pLGICs), including receptors for acetylcholine, serotonin, glycine and γ-aminobutyric acid. Several bacterial homologues have been identified that are excellent models for understanding allosteric binding of alcohols and anesthetics in human Cys-loop receptors. Recently, we showed that a single point mutation on a prokaryotic homologue (GLIC) could transform it from a channel weakly potentiated by ethanol into a highly ethanol-sensitive channel. Here, we have employed molecular simulations to study ethanol binding to GLIC, and to elucidate the role of the ethanol-enhancing mutation in GLIC modulation. By performing 1-µs simulations with and without ethanol on wild-type and mutated GLIC, we observed spontaneous binding in both intra-subunit and inter-subunit transmembrane cavities. In contrast to the glycine receptor GlyR, in which we previously observed ethanol binding primarily in an inter-subunit cavity, ethanol primarily occupied an intra-subunit cavity in wild-type GLIC. However, the highly ethanol-sensitive GLIC mutation significantly enhanced ethanol binding in the inter-subunit cavity. These results demonstrate dramatic effects of the F(14')A mutation on the distribution of ligands, and are consistent with a two-site model of pLGIC inhibition and potentiation.


Asunto(s)
Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/química , Etanol/química , Simulación de Dinámica Molecular , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Etanol/metabolismo , Membrana Dobles de Lípidos/química , Modelos Biológicos , Mutación , Fosfatidilcolinas/química , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados , Agua/química
9.
Proc Natl Acad Sci U S A ; 107(17): 7987-92, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20385800

RESUMEN

Proper regulation of neurotransmission requires that ligand-activated ion channels remain closed until agonist binds. How channels then open remains poorly understood. Glycine receptor (GlyR) gating is initiated by agonist binding at interfaces between adjacent subunits in the extracellular domain. Aspartate-97, located at the alpha1 GlyR interface, is a conserved residue in the cys-loop receptor superfamily. The mutation of D97 to arginine (D97R) causes spontaneous channel opening, with open and closed dwell times similar to those of maximally activated WT GlyR. Using a model of the N-terminal domain of the alpha1 GlyR, we hypothesized that an arginine-119 residue was forming intersubunit electrostatic bonds with D97. The D97R/R119E charge reversal restored this interaction, stabilizing channels in their closed states. Cysteine substitution shows that this link occurs between adjacent subunits. This intersubunit electrostatic interaction among GlyR subunits thus contributes to the stabilization of the closed channel state, and its disruption represents a critical step in GlyR activation.


Asunto(s)
Activación del Canal Iónico/fisiología , Modelos Moleculares , Receptores de Glicina/metabolismo , Transmisión Sináptica/fisiología , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Secuencia de Bases , ADN Complementario/genética , Electrofisiología , Datos de Secuencia Molecular , Mutación/genética , Técnicas de Placa-Clamp , Receptores de Glicina/química , Receptores de Glicina/genética , Análisis de Secuencia de ADN , Electricidad Estática , Xenopus
10.
Curr Opin Anaesthesiol ; 25(4): 405-10, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22614247

RESUMEN

PURPOSE OF REVIEW: Although general anesthetics have been provided effectively for many years, their exact molecular underpinnings remain relatively unknown. In this article, we discuss the recent findings associated with resistance to anesthetic effects as a way of shedding light on these mechanisms. RECENT FINDINGS: The original theories of anesthetic action based upon their effects on cellular membranes have given way to specific theories concerning direct effects on ion channel proteins. These molecular targets are intimately involved in the conduct of neuronal signaling within the central nervous system and are thought to be essential in the modulation of conscious states. It is the lack of a thorough understanding of unperturbed consciousness that fosters great difficulty in understanding how anesthetics alter this conscious state. However, one very fruitful line of analysis in the quest for such answers lies in the examination of both in-vitro and in-vivo ion channel systems that seem to maintain variable levels of resistance to anesthetics. SUMMARY: Information about the possible targets and molecular nature of anesthetic action is being derived from studies of anesthetic resistance in γ aminobutyric acid receptors, tandem pore potassium channels, and an apparently wide variety of protein systems within the nematode, Caenorhabditis elegans.


Asunto(s)
Anestésicos/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Resistencia a Medicamentos , Humanos , Canales de Potasio/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos
11.
J Chem Inf Model ; 50(12): 2248-55, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21117677

RESUMEN

Ligand-gated ion channels (LGICs) significantly modulate anesthetic effects. Their exact molecular structure remains unknown. This has led to ambiguity regarding the proper amino acid alignment within their 3D structure and, in turn, the location of any anesthetic binding sites. Current controversies suggest that such a site could be located in either an intra- or intersubunit locale within the transmembrane domain of the protein. Here, we built a model of the glycine alpha one receptor (GlyRa1) based on the open-state structures of two new high-resolution ion channel templates from the prokaryote, Gloebacter violaceus (GLIC). Sequence scoring suggests reasonable homology between GlyRa1 and GLIC. Three of the residues notable for modulating anesthetic action are on transmembrane segments 1-3 (TM1-3): (ILE229, SER 267, and ALA 288). They line an intersubunit interface, in contrast to previous models. However, residues from the fourth transmembrane domain (TM4) that are known to modulate a variety of anesthetic effects are quite distant from this putative anesthetic binding site. While this model can account for a large proportion of the physicochemical data regarding such proteins, it cannot readily account for the alterations on anesthetic effects that are due to mutations within TM4.


Asunto(s)
Anestésicos/metabolismo , Proteínas Bacterianas/química , Membrana Celular , Cianobacterias , Canales Iónicos Activados por Ligandos/química , Modelos Moleculares , Receptores de Glicina/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores de Glicina/metabolismo
12.
Methods Enzymol ; 602: 77-95, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588042

RESUMEN

General anesthetics are thought to allosterically bind and potentiate the inhibitory currents of the GABAA receptor through drug-specific binding sites. The physiologically relevant isoform of the GABAA receptor is a transmembrane ligand-gated ion channel consisting of five subunits (γ-α-ß-α-ß linkage) symmetrically arranged around a central chloride-conducting pore. Although the exact molecular structure of this heteropentameric GABAA receptor remains unknown, molecular modeling has allowed significant advancements in understanding anesthetic binding and action. Using the open-channel conformations of the homologous glycine and glutamate-gated chloride receptors as templates, a homology model of the GABAA receptor was constructed using the Discovery Studio computational chemistry software suite. Consensus structural alignment of the homology templates allowed for the construction of a three-dimensional heteropentameric GABAA receptor model with (γ2-ß3-α1-ß3-α1) subunit linkage. An anesthetic binding site was identified within the transmembrane α/ß intersubunit space by the convergence of three residues shown to be essential for anesthetic activity in previous studies with mutant mice (ß3-N265, ß3-M286, α1-L232). Propofol derivatives docked into this binding site showed log-linear correlation with experimentally derived GABAA receptor potentiation (EC50) values, suggesting this binding site may be important for receptor activation. The receptor-based pharmacophore was analyzed with surface maps displaying the predominant anesthetic-protein interactions, revealing an amphiphilic binding cavity incorporating the three residues involved in anesthetic modulation. Quantum mechanics calculations of the bonding patterns found in complementary high-resolution receptor systems further elucidated the complex nature of anesthetic-protein interactions.


Asunto(s)
Anestésicos/farmacología , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Receptores de GABA-A/metabolismo , Algoritmos , Anestésicos/química , Sitios de Unión , Etomidato/química , Etomidato/farmacología , Ligandos , Propofol/química , Propofol/farmacología , Dominios Proteicos , Teoría Cuántica , Receptores de GABA-A/química , Homología de Secuencia de Aminoácido , Programas Informáticos
13.
Anesth Analg ; 104(2): 318-24, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17242087

RESUMEN

BACKGROUND: It is not yet possible to obtain crystal structures of anesthetic molecules bound to proteins that are plausible neuronal targets; for example, ligand-gated ion channels. However, there are x-ray crystal structures in which anesthetics are complexed with proteins that are not directly related to anesthetic action. Much useful information about anesthetic-protein interactions can be derived from the x-ray crystal structures of halothane-cholesterol oxidase, bromoform-luciferase, halothane-albumin, and dichloroethane-dehalogenase. These structures show anesthetic-protein interactions at the atomic level. METHODS: We obtained the known coordinate files for bromoform-luciferase, halothane- albumin, dichloroethane-dehalogenase, and halothane-cholesterol oxidase. These were then modified by adding hydrogens, edited into subsets, and underwent a series of restrained molecular mechanics optimizations. Final analysis of anesthetic polarization within the anesthetic binding site occurred via combined molecular mechanics-quantum mechanics calculations. RESULTS: The anesthetic binding sites within these well-characterized anesthetic-protein complexes possess a set of common characteristics that we refer to as "binding motifs." The common features of these motifs are polar and nonpolar interactions within an amphiphilic binding cavity, including the presence of weak hydrogen bond interactions with amino acids and water molecules. Calculations also demonstrated the polarizing effect of the amphipathic binding sites on what are otherwise considered quite hydrophobic anesthetics. This polarization appears energetically favorable. CONCLUSIONS: Anesthetic binding to proteins involves amphipathic interactions.


Asunto(s)
Secuencias de Aminoácidos , Anestésicos/química , Anestésicos/metabolismo , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Secuencias de Aminoácidos/fisiología , Sitios de Unión/fisiología , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología
14.
J Phys Chem B ; 121(24): 5883-5896, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28548837

RESUMEN

Propofol (PFL, 1-hydroxyl-2,6-diisopropylbenzene) is currently used widely as one of the most well-known intravenous anesthetics to relieve surgical suffering, but its mechanism of action is not yet clear. Previous experimental studies have demonstrated that the hydroxyl group of PFL plays a dominant role in the molecular recognition of PFL with receptors that lead to hypnosis. To further explore the mechanism of anesthesia induced by PFL in the present work, the exact binding features and interaction details of PFL with three important proteins, human serum albumin (HSA), the pH-gated ion channel from Gloeobacter violaceus (GLIC), and horse spleen apoferritin (HSAF), were investigated systematically by using a rigorous three-layer ONIOM (M06-2X/6-31+G*:PM6:AMBER) method. Additionally, to further characterize the possible importance of such hydroxyl interactions, a similar set of calculations was carried out on the anesthetically inactive fropofol (FFL, 1-fluoro-2,6-diisopropylbenzene) in which the fluorine was substituted for the hydroxyl. According to the ONIOM calculations, atoms in molecules (AIM) analyses, and electrostatic potential (ESP) analyses, the significance of hydrogen bond, halogen bond, and hydrophobic interactions in promoting proper molecular recognition was revealed. The binding interaction energies of PFL with different proteins were generally larger than FFL and are a significant determinant of their differential anesthetic efficacies. Interestingly, although the hydrogen-bonding effect of the hydroxyl moiety was prominent in propofol, the substitution of the 1-hydroxyl by a fluorine atom did not prevent FFL from binding to the protein via a halogen-bonding interaction. It therefore became clear that multiple specific interactions rather than just hydrogen or halogen bonds must be taken into account to explain the different anesthesia endpoints caused by PFL and FFL. The contributions of key residues in ligand-receptor binding were also quantified, and the calculated results agreed with many available experimental observations. This work will provide complementary insights into the molecular mechanisms of anesthetic action for PFL from a robust theoretical point of view. This will not only assist in interpreting experimental observations but will also help to develop working hypotheses for further experiments and future drug design.


Asunto(s)
Apoferritinas/química , Hidróxidos/química , Canales Iónicos/química , Propofol/química , Teoría Cuántica , Albúmina Sérica Humana/química , Animales , Cianobacterias/química , Caballos , Humanos , Concentración de Iones de Hidrógeno , Estructura Molecular
15.
ACS Chem Neurosci ; 7(1): 100-8, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26571107

RESUMEN

Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6' mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6'M), increased inhibition (T6'V), and small potentiation (T6'Y and T6'F). The 5' mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3' and 9') or no changes (2' and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6' position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2', 5', 6', and 9' residues were easily accessible from the ion pore, with 5' and 6' residues from neighboring subunits facing each other; L3' and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15'S), ρ1(T6'Y), and ρ1(T6'Y,I15'S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6' position. Replacing the bulky 15' residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Unión Proteica/efectos de los fármacos , Receptores de GABA-A/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , GABAérgicos/farmacología , Hexanoles/farmacología , Microinyecciones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oocitos , Técnicas de Placa-Clamp , Unión Proteica/genética , Estructura Secundaria de Proteína , Receptores de GABA-A/genética , Transducción Genética , Xenopus laevis , Ácido gamma-Aminobutírico/farmacología
16.
Semin Cardiothorac Vasc Anesth ; 20(2): 133-40, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26392388

RESUMEN

The innovative Perioperative Surgical Home model aims to optimize the outcomes of surgical patients by leveraging the expertise and leadership of physician anesthesiologists, but there is a paucity of practical examples to follow. Veterans Affairs health care, the largest integrated system in the United States, may be the ideal environment in which to explore this model. We present our experience implementing Perioperative Surgical Home at one tertiary care university-affiliated Veterans Affairs hospital. This process involved initiating consistent postoperative patient follow-up beyond the postanesthesia care unit, a focus on improving in-hospital acute pain management, creation of an accessible database to track outcomes, developing new clinical pathways, and recruiting additional staff. Today, our Perioperative Surgical Home facilitates communication between various services involved in the care of surgical patients, monitoring of patient outcomes, and continuous process improvement.


Asunto(s)
Atención Perioperativa , Hospitales de Veteranos , Humanos , Manejo del Dolor , Atención Terciaria de Salud
17.
J Phys Chem B ; 119(40): 12771-82, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26388288

RESUMEN

Anesthetics have been employed widely to relieve surgical suffering, but their mechanism of action is not yet clear. For over a century, the mechanism of anesthesia was previously thought to be via lipid bilayer interactions. In the present work, a rigorous three-layer ONIOM(M06-2X/6-31+G*:PM6:AMBER) method was utilized to investigate the nature of interactions between several anesthetics and actual protein binding sites. According to the calculated structural features, interaction energies, atomic charges, and electrostatic potential surfaces, the amphiphilic nature of anesthetic-protein interactions was demonstrated for both inhalational and injectable anesthetics. The existence of hydrogen and halogen bonding interactions between anesthetics and proteins was clearly identified, and these interactions served to assist ligand recognition and binding by the protein. Within all complexes of inhalational or injectable anesthetics, the polarization effects play a dominant role over the steric effects and induce a significant asymmetry in the otherwise symmetric atomic charge distributions of the free ligands in vacuo. This study provides new insight into the mechanism of action of general anesthetics in a more rigorous way than previously described. Future rational design of safer anesthetics for an aging and more physiologically vulnerable population will be predicated on this greater understanding of such specific interactions.


Asunto(s)
Anestésicos/química , Proteínas/química , Modelos Moleculares , Unión Proteica
18.
ACS Chem Neurosci ; 5(12): 1246-52, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25340635

RESUMEN

Anesthetics are thought to mediate a portion of their activity via binding to and modulation of potassium channels. In particular, tandem pore potassium channels (K2P) are transmembrane ion channels whose current is modulated by the presence of general anesthetics and whose genetic absence has been shown to confer a level of anesthetic resistance. While the exact molecular structure of all K2P forms remains unknown, significant progress has been made toward understanding their structure and interactions with anesthetics via the methods of molecular modeling, coupled with the recently released higher resolution structures of homologous potassium channels to act as templates. Such models reveal the convergence of amino acid regions that are known to modulate anesthetic activity onto a common three- dimensional cavity that forms a putative anesthetic binding site. The model successfully predicts additional important residues that are also involved in the putative binding site as validated by the results of suggested experimental mutations. Such a model can now be used to further predict other amino acid residues that may be intimately involved in the target-based structure-activity relationships that are necessary for anesthetic binding.


Asunto(s)
Anestésicos Generales/farmacología , Halotano/farmacología , Modelos Moleculares , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Biología Computacional , Células HEK293 , Humanos , Lymnaea , Mutación/genética , Relación Estructura-Actividad , Transfección
19.
Pharmaceuticals (Basel) ; 3(7): 2178-2196, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27713348

RESUMEN

For over 160 years, general anesthetics have been given for the relief of pain and suffering. While many theories of anesthetic action have been purported, it has become increasingly apparent that a significant molecular focus of anesthetic action lies within the family of ligand-gated ion channels (LGIC's). These protein channels have a transmembrane region that is composed of a pentamer of four helix bundles, symmetrically arranged around a central pore for ion passage. While initial and some current models suggest a possible cavity for binding within this four helix bundle, newer calculations postulate that the actual cavity for anesthetic binding may exist between four helix bundles. In either scenario, these cavities have a transmembrane mode of access and may be partially bordered by lipid moieties. Their physicochemical nature is amphiphilic. Anesthetic binding may alter the overall motion of a ligand-gated ion channel by a "foot-in-door" motif, resulting in the higher likelihood of and greater time spent in a specific channel state. The overall gating motion of these channels is consistent with that shown in normal mode analyses carried out both in vacuo as well as in explicitly hydrated lipid bilayer models. Molecular docking and large scale molecular dynamics calculations may now begin to show a more exact mode by which anesthetic molecules actually localize themselves and bind to specific protein sites within LGIC's, making the design of future improvements to anesthetic ligands a more realizable possibility.

20.
ACS Chem Neurosci ; 1(8): 552-8, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-22816018

RESUMEN

We have previously used molecular modeling and normal-mode analyses combined with experimental data to visualize a plausible model of a transmembrane ligand-gated ion channel. We also postulated how the gating motion of the channel may be affected by the presence of various ligands, especially anesthetics. As is typical for normal-mode analyses, those studies were performed in vacuo to reduce the computational complexity of the problem. While such calculations constitute an efficient way to model the large scale structural flexibility of transmembrane proteins, they can be criticized for neglecting the effects of an explicit phospholipid bilayer or hydrated environment. Here, we show the successful calculation of normal-mode motions for our model of a glycine α-1 receptor, now suspended in a fully hydrated lipid bilayer. Despite the almost uniform atomic density, the introduction of water and lipid does not grossly distort the overall gating motion. Normal-mode analysis revealed that even a fully immersed glycine α-1 receptor continues to demonstrate an iris-like channel gating motion as a low-frequency, high-amplitude natural harmonic vibration consistent with channel gating. Furthermore, the introduction of periodic boundary conditions allows the examination of simultaneous harmonic vibrations of lipid in synchrony with the protein gating motions that are compatible with reasonable lipid bilayer perturbations. While these perturbations tend to influence the overall protein motion, this work provides continued support for the iris-like motion model that characterizes gating within the family of ligand-gated ion channels.


Asunto(s)
Simulación por Computador , Activación del Canal Iónico , Receptores de Glicina/química , Humanos , Membrana Dobles de Lípidos , Modelos Moleculares , Movimiento (Física) , Conformación Proteica , Receptores de Glicina/metabolismo , Vibración , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA