Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 78(5): e703-e713, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34369899

RESUMEN

ABSTRACT: Maturation of fibrillar collagen is known to play a crucial role in the pathophysiology of myocardial fibrosis. Procollagen C-proteinase enhancer 1 (PCPE1) has a key role in procollagen maturation and collagen fibril formation. The phenotype of both male and female PCPE1 knock-out mice was investigated under basal conditions to explore the potential of PCPE1 as a therapeutic target in heart failure. Global constitutive PCPE1-/- mice were generated. Serum procollagen I C-terminal propeptide, organ histology, and cutaneous wound healing were assessed in both wild type (WT) and PCPE1-/- mice. In addition, the cardiac expression of genes involved in collagen metabolism was investigated and the total and insoluble cardiac collagen contents determined. Cardiac function was evaluated by echocardiography. No differences in survival, clinical chemistry, or organ histology were observed in PCPE1-/- mice compared with WT. Serum procollagen I C-terminal propeptide was lower in PCPE1-/- mice. Cardiac mRNA expression of Bmp1, Col1a1, Col3a1, and Loxl2 was similar, whereas Tgfb and Loxl1 mRNA levels were decreased in PCPE1-/- mice compared with sex-matched WT. No modification of total or insoluble cardiac collagen content was observed between the 2 strains. Ejection fraction was slightly decreased in PCPE1-/- male mice, but not in females. Finally, wound healing was not altered in PCPE1-/- mice. PCPE1 deficiency does not trigger any major liabilities and does not affect cardiac collagen content nor its function under basal conditions. Further studies are required to evaluate its role under stressed conditions and determine its suitability as a therapeutic target for heart failure.


Asunto(s)
Colágeno/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Miocardio/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Animales , Proteína Morfogenética Ósea 1/genética , Proteína Morfogenética Ósea 1/metabolismo , Colágeno/genética , Cadena alfa 1 del Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación de la Expresión Génica , Genotipo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fragmentos de Péptidos/sangre , Fenotipo , Procolágeno/sangre , Volumen Sistólico , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Función Ventricular Izquierda , Cicatrización de Heridas
2.
Toxicol Sci ; 196(1): 112-125, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647630

RESUMEN

To minimize the occurrence of unexpected toxicities in early phase preclinical studies of new drugs, it is vital to understand fundamental similarities and differences between preclinical species and humans. Species differences in sensitivity to acetaminophen (APAP) liver injury have been related to differences in the fraction of the drug that is bioactivated to the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). We have used physiologically based pharmacokinetic modeling to identify oral doses of APAP (300 and 1000 mg/kg in mice and rats, respectively) yielding similar hepatic burdens of NAPQI to enable the comparison of temporal liver tissue responses under conditions of equivalent chemical insult. Despite pharmacokinetic and biochemical verification of the equivalent NAPQI insult, serum biomarker and tissue histopathology analyses revealed that mice still exhibited a greater degree of liver injury than rats. Transcriptomic and proteomic analyses highlighted the stronger activation of stress response pathways (including the Nrf2 oxidative stress response and autophagy) in the livers of rats, indicative of a more robust transcriptional adaptation to the equivalent insult. Components of these pathways were also found to be expressed at a higher basal level in the livers of rats compared with both mice and humans. Our findings exemplify a systems approach to understanding differential species sensitivity to hepatotoxicity. Multiomics analysis indicated that rats possess a greater basal and adaptive capacity for hepatic stress responses than mice and humans, with important implications for species selection and human translation in the safety testing of new drug candidates associated with reactive metabolite formation.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Ratones , Humanos , Animales , Acetaminofén/toxicidad , Acetaminofén/metabolismo , Proteómica , Especificidad de la Especie , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Análisis de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA