Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Neurol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38989655

RESUMEN

PURPOSE OF REVIEW: To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS: Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY: Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.

2.
Semin Cell Dev Biol ; 29: 107-15, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440603

RESUMEN

Lamins A and C, encoded by LMNA, are constituent of the nuclear lamina, a meshwork of proteins underneath the nuclear envelope first described as scaffolding proteins of the nucleus. Since the discovery of LMNA mutations in highly heterogeneous human disorders (including cardiac and muscular dystrophies, lipodystrophies and progeria), the number of functions described for lamin A/C has expanded. Lamin A/C is notably involved in the regulation of chromatin structure and gene transcription, and in the resistance of cells to mechanical stress. This review focuses on studies performed on knock-out and knock-in Lmna mouse models, which have led to decipher some of the lamin A/C functions in striated muscles and to the first preclinical trials of pharmaceutical therapies.


Asunto(s)
Cardiomiopatías/genética , Lamina Tipo A/genética , Músculo Estriado/patología , Distrofias Musculares/genética , Lámina Nuclear/genética , Citoesqueleto de Actina/patología , Animales , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/patología , Desmina/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Noqueados , Músculo Estriado/citología , Membrana Nuclear , Vimentina/genética
3.
J Cell Sci ; 127(Pt 13): 2873-84, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24806962

RESUMEN

The mechanisms underlying the cell response to mechanical forces are crucial for muscle development and functionality. We aim to determine whether mutations of the LMNA gene (which encodes lamin A/C) causing congenital muscular dystrophy impair the ability of muscle precursors to sense tissue stiffness and to respond to mechanical challenge. We found that LMNA-mutated myoblasts embedded in soft matrix did not align along the gel axis, whereas control myoblasts did. LMNA-mutated myoblasts were unable to tune their cytoskeletal tension to the tissue stiffness as attested by inappropriate cell-matrix adhesion sites and cytoskeletal tension in soft versus rigid substrates or after mechanical challenge. Importantly, in soft two-dimensional (2D) and/or static three-dimensional (3D) conditions, LMNA-mutated myoblasts showed enhanced activation of the yes-associated protein (YAP) signaling pathway that was paradoxically reduced after cyclic stretch. siRNA-mediated downregulation of YAP reduced adhesion and actin stress fibers in LMNA myoblasts. This is the first demonstration that human myoblasts with LMNA mutations have mechanosensing defects through a YAP-dependent pathway. In addition, our data emphasize the crucial role of biophysical attributes of cellular microenvironment to the response of mechanosensing pathways in LMNA-mutated myoblasts.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lamina Tipo A/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Microambiente Celular/fisiología , Humanos , Lamina Tipo A/genética , Microscopía Confocal , Mutación , Fosfoproteínas/genética , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP
4.
Hum Mol Genet ; 22(15): 3152-64, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23575224

RESUMEN

Dilated cardiomyopathy (DCM) associates left ventricular (LV) dilatation and systolic dysfunction and is a major cause of heart failure and cardiac transplantation. LMNA gene encodes lamins A/C, proteins of the nuclear envelope. LMNA mutations cause DCM with conduction and/or rhythm defects. The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(ΔK32/+) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic ΔK32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac remodelling. In older hearts, when DCM has developed, the lamin A/C level was normalized and associated with increased toxic ΔK32-lamin expression. Crossing our mice with the Ub(G76V)-GFP ubiquitin-proteasome system (UPS) reporter mice revealed a heart-specific UPS impairment in Het. While UPS impairment itself has a clear deleterious effect on engineered heart tissue's force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of ΔK32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our data provide evidence that Het cardiomyocytes have to deal with major dilemma: mutant lamin A/C degradation or normalization of lamin level to fight the deleterious effect of lamin haploinsufficiency, both leading to DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Haploinsuficiencia , Heterocigoto , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Núcleo Celular/ultraestructura , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Lamina Tipo A/química , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Mutación , Contracción Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
5.
J Cell Sci ; 126(Pt 8): 1753-62, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23444379

RESUMEN

A-type lamins are components of the nuclear lamina, a filamentous network of the nuclear envelope in metazoans that supports nuclear architecture. In addition, lamin A/C can also be found in the interior of the nucleus. This nucleoplasmic lamin pool is soluble in physiological buffer, depends on the presence of the lamin-binding protein, lamina-associated polypeptide 2α (LAP2α) and regulates cell cycle progression in tissue progenitor cells. ΔK32 mutations in A-type lamins cause severe congenital muscle disease in humans and a muscle maturation defect in Lmna(ΔK32/ΔK32) knock-in mice. Mutant ΔK32 lamin A/C protein levels were reduced and all mutant lamin A/C was soluble and mislocalized to the nucleoplasm. To test the role of LAP2α in nucleoplasmic ΔK32 lamin A/C regulation and functions, we deleted LAP2α in Lmna(ΔK32/ΔK32) knock-in mice. In double mutant mice the Lmna(ΔK32/ΔK32)-linked muscle defect was unaffected. LAP2α interacted with mutant lamin A/C, but unlike wild-type lamin A/C, the intranuclear localization of ΔK32 lamin A/C was not affected by loss of LAP2α. In contrast, loss of LAP2α in Lmna(ΔK32/ΔK32) mice impaired the regulation of tissue progenitor cells as in lamin A/C wild-type animals. These data indicate that a LAP2α-independent assembly defect of ΔK32 lamin A/C is the predominant cause of the mouse pathology, whereas the LAP2α-linked functions of nucleoplasmic lamin A/C in the regulation of tissue progenitor cells are not affected in Lmna(ΔK32/ΔK32) mice.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Distrofias Musculares/metabolismo , Membrana Nuclear/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Distrofias Musculares/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Hum Mol Genet ; 21(5): 1037-48, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22090424

RESUMEN

The LMNA gene encodes lamin A/C intermediate filaments that polymerize beneath the nuclear membrane, and are also found in the nucleoplasm in an uncharacterized assembly state. They are thought to have structural functions and regulatory roles in signaling pathways via interaction with transcription factors. Mutations in LMNA have been involved in numerous inherited human diseases, including severe congenital muscular dystrophy (L-CMD). We created the Lmna(ΔK32) knock-in mouse harboring a L-CMD mutation. Lmna(ΔK32/ΔK32) mice exhibited striated muscle maturation delay and metabolic defects, including reduced adipose tissue and hypoglycemia leading to premature death. The level of mutant proteins was markedly lower in Lmna(ΔK32/ΔK32), and while wild-type lamin A/C proteins were progressively relocated from nucleoplasmic foci to the nuclear rim during embryonic development, mutant proteins were maintained in nucleoplasmic foci. In the liver and during adipocyte differentiation, expression of ΔK32-lamin A/C altered sterol regulatory element binding protein 1 (SREBP-1) transcriptional activities. Taken together, our results suggest that lamin A/C relocation at the nuclear lamina seems important for tissue maturation potentially by releasing its inhibitory function on transcriptional factors, including but not restricted to SREBP-1. And importantly, L-CMD patients should be investigated for putative metabolic disorders.


Asunto(s)
Núcleo Celular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Enfermedades Metabólicas/genética , Músculo Esquelético/crecimiento & desarrollo , Lámina Nuclear/metabolismo , Adipocitos/citología , Adipogénesis , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Técnicas de Sustitución del Gen , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Corazón/crecimiento & desarrollo , Lamina Tipo B/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones , Mortalidad Prematura , Músculo Esquelético/anatomía & histología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miocitos Cardíacos/citología , Tamaño de los Órganos , Fenotipo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética
7.
Biochem Biophys Rep ; 39: 101757, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39035020

RESUMEN

Lamina-associated polypeptide 1 (LAP1), a ubiquitously expressed nuclear envelope protein, appears to be essential for the maintenance of cell homeostasis. Although rare, mutations in the human LAP1-encoding TOR1AIP1 gene cause severe diseases and can culminate in the premature death of affected individuals. Despite there is increasing evidence of the pathogenicity of TOR1AIP1 mutations, the current knowledge on LAP1's physiological roles in humans is limited; hence, investigation is required to elucidate the critical functions of this protein, which can be achieved by uncovering the molecular consequences of LAP1 depletion, a topic that remains largely unexplored. In this work, the proteome of patient-derived LAP1-deficient fibroblasts carrying a pathological TOR1AIP1 mutation (LAP1 E482A) was quantitatively analyzed to identify global changes in protein abundance levels relatively to control fibroblasts. An in silico functional enrichment analysis of the mass spectrometry-identified differentially expressed proteins was also performed, along with additional in vitro functional assays, to unveil the biological processes that are potentially dysfunctional in LAP1 E482A fibroblasts. Collectively, our findings suggest that LAP1 deficiency may induce significant alterations in various cellular activities, including DNA repair, messenger RNA degradation/translation, proteostasis and glutathione metabolism/antioxidant response. This study sheds light on possible new functions of human LAP1 and could set the basis for subsequent in-depth mechanistic investigations. Moreover, by identifying deregulated signaling pathways in LAP1-deficient cells, our work may offer valuable molecular targets for future disease-modifying therapies for TOR1AIP1-associated nuclear envelopathies.

8.
J Exp Med ; 204(5): 1227-35, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-17485520

RESUMEN

The intercalated disc (ID) of cardiac myocytes is emerging as a crucial structure in the heart. Loss of ID proteins like N-cadherin causes lethal cardiac abnormalities, and mutations in ID proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein 2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. Complete loss of LIMP-2 in genetically engineered mice did not affect cardiac development; however, these LIMP-2 null mice failed to mount a hypertrophic response to increased blood pressure but developed cardiomyopathy. Disturbed cadherin localization in these hearts suggested that LIMP-2 has important functions outside lysosomes. Indeed, we also find LIMP-2 in the ID, where it associates with cadherin. RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated beta-catenin to cadherin, whereas overexpression of LIMP-2 has the opposite effect. Collectively, our data show that LIMP-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the ID.


Asunto(s)
Antígenos CD36/metabolismo , Cardiomiopatía Dilatada/metabolismo , Hipertensión/complicaciones , Proteínas de Membrana de los Lisosomas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Estenosis de la Válvula Aórtica/metabolismo , Antígenos CD36/genética , Cadherinas/metabolismo , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/genética , Cartilla de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , beta Catenina/metabolismo
9.
Hum Mol Genet ; 20(4): 694-704, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21131290

RESUMEN

Selenoprotein N (SelN) deficiency causes a group of inherited neuromuscular disorders termed SEPN1-related myopathies (SEPN1-RM). Although the function of SelN remains unknown, recent data demonstrated that it is dispensable for mouse embryogenesis and suggested its involvement in the regulation of ryanodine receptors and/or cellular redox homeostasis. Here, we investigate the role of SelN in satellite cell (SC) function and muscle regeneration, using the Sepn1(-/-) mouse model. Following cardiotoxin-induced injury, SelN expression was strongly up-regulated in wild-type muscles and, for the first time, we detected its endogenous expression in a subset of mononucleated cells by immunohistochemistry. We show that SelN deficiency results in a reduced basal SC pool in adult skeletal muscles and in an imperfect muscle restoration following a single injury. A dramatic depletion of the SC pool was detected after the first round of degeneration and regeneration that totally prevented subsequent regeneration of Sepn1(-/-) muscles. We demonstrate that SelN deficiency affects SC dynamics on isolated single fibres and increases the proliferation of Sepn1(-/-) muscle precursors in vivo and in vitro. Most importantly, exhaustion of the SC population was specifically identified in muscle biopsies from patients with mutations in the SEPN1 gene. In conclusion, we describe for the first time a major physiological function of SelN in skeletal muscles, as a key regulator of SC function, which likely plays a central role in the pathophysiological mechanism leading to SEPN1-RM.


Asunto(s)
Músculo Esquelético/patología , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/patología , Selenoproteínas/deficiencia , Selenoproteínas/genética , Animales , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Proteínas Cardiotóxicas de Elápidos/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Enfermedades Musculares/patología , Mutación
10.
Cells ; 12(15)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37566074

RESUMEN

The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells.


Asunto(s)
Fibroblastos , Fibras Musculares Esqueléticas , Humanos , Adolescente , Diferenciación Celular/genética , Mioblastos/metabolismo , Genómica
11.
Am J Hum Genet ; 85(3): 338-53, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19716112

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a rare disorder characterized by early joint contractures, muscular dystrophy, and cardiac involvement with conduction defects and arrhythmias. So far, only 35% of EDMD cases are genetically elucidated and associated with EMD or LMNA gene mutations, suggesting the existence of additional major genes. By whole-genome scan, we identified linkage to the Xq26.3 locus containing the FHL1 gene in three informative families belonging to our EMD- and LMNA-negative cohort. Analysis of the FHL1 gene identified seven mutations, in the distal exons of FHL1 in these families, three additional families, and one isolated case, which differently affect the three FHL1 protein isoforms: two missense mutations affecting highly conserved cysteines, one abolishing the termination codon, and four out-of-frame insertions or deletions. The predominant phenotype was characterized by myopathy with scapulo-peroneal and/or axial distribution, as well as joint contractures, and associated with a peculiar cardiac disease characterized by conduction defects, arrhythmias, and hypertrophic cardiomyopathy in all index cases of the seven families. Heterozygous female carriers were either asymptomatic or had cardiac disease and/or mild myopathy. Interestingly, four of the FHL1-mutated male relatives had isolated cardiac disease, and an overt hypertrophic cardiomyopathy was present in two. Expression and functional studies demonstrated that the FHL1 proteins were severely reduced in all tested patients and that this was associated with a severe delay in myotube formation in the two patients for whom myoblasts were available. In conclusion, FHL1 should be considered as a gene associated with the X-linked EDMD phenotype, as well as with hypertrophic cardiomyopathy.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Mutación/genética , Adolescente , Adulto , Enfermedades Cardiovasculares/complicaciones , Diferenciación Celular , Niño , Preescolar , Cromosomas Humanos X/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Técnica del Anticuerpo Fluorescente , Genes Ligados a X , Estudio de Asociación del Genoma Completo , Humanos , Immunoblotting , Proteínas con Dominio LIM , Escala de Lod , Enfermedades Pulmonares/complicaciones , Masculino , Persona de Mediana Edad , Distrofia Muscular de Emery-Dreifuss/complicaciones , Mioblastos/patología , Linaje , Isoformas de Proteínas/genética , Sarcómeros/patología
12.
Biochem Soc Trans ; 39(6): 1687-92, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22103508

RESUMEN

Mutations in the LMNA gene encoding lamins A/C are responsible for more than ten different disorders called laminopathies which affect various tissues in an isolated (striated muscle, adipose tissue or peripheral nerve) or systemic (premature aging syndromes) fashion. Overlapping phenotypes are also observed. Associated with this wide clinical variability, there is also a large genetic heterogeneity, with 408 different mutations being reported to date. Whereas a few hotspot mutations emerge for some types of laminopathies, relationships between genotypes and phenotypes remain poor for laminopathies affecting the striated muscles. In addition, there is important intrafamilial variability, explained only in a few cases by digenism, thus suggesting an additional contribution from modifier genes. In this regard, a chromosomal region linked to the variability in the age at onset of myopathic symptoms in striated muscle laminopathies has recently been identified. This locus is currently under investigation to identify modifier variants responsible for this variability.


Asunto(s)
Enfermedad/genética , Heterogeneidad Genética , Laminas/genética , Animales , Humanos , Mutación/genética , Especificidad de Órganos
13.
J Clin Med ; 10(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768351

RESUMEN

Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.

14.
Cells ; 9(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244403

RESUMEN

LMNA encodes for Lamin A/C, type V intermediate filaments that polymerize under the inner nuclear membrane to form the nuclear lamina. A small fraction of Lamin A/C, less polymerized, is also found in the nucleoplasm. Lamin A/C functions include roles in nuclear resistance to mechanical stress and gene regulation. LMNA mutations are responsible for a wide variety of pathologies, including Emery-Dreifuss (EDMD) and LMNA-related congenital muscular dystrophies (L-CMD) without clear genotype-phenotype correlations. Both diseases presented with striated muscle disorders although L-CMD symptoms appear much earlier and are more severe. Seeking for pathomechanical differences to explain the severity of L-CMD mutations, we performed an in silico analysis of the UMD-LMNA database and found that L-CMD mutations mainly affect residues involved in Lamin dimer and tetramer stability. In line with this, we found increased nucleoplasmic Lamin A/C in L-CMD patient fibroblasts and mouse myoblasts compared to the control and EDMD. L-CMD myoblasts show differentiation defects linked to their inability to upregulate muscle specific nuclear envelope (NE) proteins expression. NE proteins were mislocalized, leading to misshapen nuclei. We conclude that these defects are due to both the absence of Lamin A/C from the nuclear lamina and its maintenance in the nucleoplasm of myotubes.


Asunto(s)
Lamina Tipo A/deficiencia , Lamina Tipo A/metabolismo , Distrofias Musculares/patología , Distrofia Muscular de Emery-Dreifuss/patología , Índice de Severidad de la Enfermedad , Animales , Células Cultivadas , Simulación por Computador , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Mutación/genética , Mioblastos/metabolismo , Fenotipo
15.
Cells ; 9(11)2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142761

RESUMEN

Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.


Asunto(s)
Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminopatías/genética , Laminopatías/metabolismo , Proteína Quinasa C-alfa/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Músculo Estriado/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación , Mioblastos/metabolismo , Ratas , Transducción de Señal
16.
Cells ; 9(5)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455813

RESUMEN

Laminopathies are causally associated with mutations on the Lamin A/C gene (LMNA). To date, more than 400 mutations in LMNA have been reported in patients. These mutations are widely distributed throughout the entire gene and are associated with a wide range of phenotypes. Unfortunately, little is known about the mechanisms underlying the effect of the majority of these mutations. This is the case of more than 40 mutations that are located at exon 4. Using CRISPR/Cas9 technology, we generated a collection of Lmna exon 4 mutants in mouse C2C12 myoblasts. These cell models included different types of exon 4 deletions and the presence of R249W mutation, one of the human variants associated with a severe type of laminopathy, LMNA-associated congenital muscular dystrophy (L-CMD). We characterized these clones by measuring their nuclear circularity, myogenic differentiation capacity in 2D and 3D conditions, DNA damage, and levels of p-ERK and p-AKT (phosphorylated Mitogen-Activated Protein Kinase 1/3 and AKT serine/threonine kinase 1). Our results indicated that Lmna exon 4 mutants showed abnormal nuclear morphology. In addition, levels and/or subcellular localization of different members of the lamin and LINC (LInker of Nucleoskeleton and Cytoskeleton) complex were altered in all these mutants. Whereas no significant differences were observed for ERK and AKT activities, the accumulation of DNA damage was associated to the Lmna p.R249W mutant myoblasts. Finally, significant myogenic differentiation defects were detected in the Lmna exon 4 mutants. These results have key implications in the development of future therapeutic strategies for the treatment of laminopathies.


Asunto(s)
Exones/genética , Lamina Tipo A/genética , Mutación/genética , Mioblastos/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Forma del Núcleo Celular , Células Clonales , Daño del ADN , Femenino , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Desarrollo de Músculos , Fracciones Subcelulares/metabolismo , Proteínas de Unión a Telómeros/metabolismo
17.
Mol Ther Methods Clin Dev ; 15: 157-169, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31660418

RESUMEN

Gene therapy is a promising strategy to cure rare diseases. The lack of regulatory sequences ensuring specific and robust expression in skeletal and cardiac muscle is a substantial limitation of gene therapy efficiency targeting the muscle tissue. Here we describe a novel muscle hybrid (MH) promoter that is highly active in both skeletal and cardiac muscle cells. It has an easily exchangeable modular structure, including an intronic module that highly enhances the expression of the gene driven by it. In cultured myoblasts, myotubes, and cardiomyocytes, the MH promoter gives relatively stable expression as well as higher activity and protein levels than the standard CMV and desmin gene promoters or the previously developed synthetic or CKM-based promoters. Combined with AAV2/9, the MH promoter also provides a high in vivo expression level in skeletal muscle and the heart after both intramuscular and systemic delivery. It is much more efficient than the desmin-encoding gene promoter, and it maintains the same specificity. This novel promoter has potential for gene therapy in muscle cells. It can provide stable transgene expression, ensuring high levels of therapeutic protein, and limited side effects because of its specificity. This constitutes an improvement in the efficiency of genetic disease therapy.

18.
Front Physiol ; 9: 1533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425656

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.

19.
Mol Ther Nucleic Acids ; 10: 376-386, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499949

RESUMEN

We assessed the potential of Lmna-mRNA repair by spliceosome-mediated RNA trans-splicing as a therapeutic approach for LMNA-related congenital muscular dystrophy. This gene therapy strategy leads to reduction of mutated transcript expression for the benefit of corresponding wild-type (WT) transcripts. We developed 5'-RNA pre-trans-splicing molecules containing the first five exons of Lmna and targeting intron 5 of Lmna pre-mRNA. Among nine pre-trans-splicing molecules, differing in the targeted sequence in intron 5 and tested in C2C12 myoblasts, three induced trans-splicing events on endogenous Lmna mRNA and confirmed at protein level. Further analyses performed in primary myotubes derived from an LMNA-related congenital muscular dystrophy (L-CMD) mouse model led to a partial rescue of the mutant phenotype. Finally, we tested this approach in vivo using adeno-associated virus (AAV) delivery in newborn mice and showed that trans-splicing events occurred in WT mice 50 days after AAV delivery, although at a low rate. Altogether, while these results provide the first evidence for reprogramming LMNA mRNA in vitro, strategies to improve the rate of trans-splicing events still need to be developed for efficient application of this therapeutic approach in vivo.

20.
Circ Res ; 96(12): e92-e101, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15933268

RESUMEN

Apoptosis-inducing factor (AIF), or programmed cell death 8 (Pdcd8), is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal apoptosis induced by oxidative stress. Conversely, in vitro, AIF has been demonstrated to have a proapoptotic role when, on induction of the mitochondrial death pathway, AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. To determine the role of AIF in myocardial apoptotic processes, we examined cardiomyocytes from an AIF-deficient mouse mutant, Harlequin (Hq). Hq mutant cardiomyocytes demonstrated increased sensitivity to H2O2-induced cell death. Further, Hq hearts subjected to ischemia/reperfusion revealed more cardiac damage and, unlike wild-type mice, the amount of damage increased with the age of the animal. Aortic banding caused enhanced hypertrophy, increased cardiomyocyte apoptotic and necrotic cell death, and accelerated progression toward maladaptive left ventricular remodeling in Hq mutant mice compared with wild-type counterparts. These findings correlated with a reduced capacity of subsarcolemmal mitochondria from Hq mutant hearts to scavenge free radicals. Together, these data demonstrate a critical role for AIF as a cardiac antioxidant in the protection against oxidative stress-induced cell death and development of heart failure induced by pressure overload.


Asunto(s)
Apoptosis , Flavoproteínas/fisiología , Insuficiencia Cardíaca/etiología , Proteínas de la Membrana/fisiología , Miocardio/patología , Estrés Oxidativo , Animales , Factor Inductor de la Apoptosis , Fenómenos Biomecánicos , Células Cultivadas , Regulación hacia Abajo , Femenino , Fibrosis , Flavoproteínas/genética , Peróxido de Hidrógeno/farmacología , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Daño por Reperfusión Miocárdica/etiología , Miocardio/metabolismo , ARN Interferente Pequeño/farmacología , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA