Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(9): e2305367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100279

RESUMEN

In organic semiconductors, a donor/acceptor heterojunction is typically required for efficient dissociation of excitons. Using transient absorption spectroscopy to study the dynamics of excited states in non-fullerene acceptors (NFAs), it is shown that NFAs can generate charges without a donor/acceptor interface. This is due to the fact that dielectric solvation provides a driving force sufficient to dissociate the excited state and form the charge-transfer (CT) state. The CT state is further dissociated into free charges at interfaces between polycrystalline regions in neat NFAs. For IEICO-4F, incorporating just 9 wt% donor polymer PTB7-Th in neat films greatly boosts charge generation, enhancing efficient exciton separation into free charges. This property is utilized to fabricate donor-dilute organic photovoltaics (OPV) delivering a power conversion efficiency of 8.3% in the case of opaque devices with a metal top-electrode and an active layer average visible transmittance (AVT) of 75%. It is shown that the intrinsic charge generation in low-bandgap NFAs contributes to the overall photocurrent generation. IEICO-4F-based OPVs with limited PTB7-Th content have high thermal resilience demonstrating little drop in performance over 700 h. PTB7-Th:IEICO-4F semitransparent OPVs are leveraged to fabricate an 8-series connected semitransparent module, demonstrating light-utilization efficiency of 2.2% alongside an AVT of 63%.

2.
Adv Mater ; 34(35): e2202575, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35789000

RESUMEN

The frontier molecular energy levels of organic semiconductors are decisive for their fundamental function and efficiency in optoelectronics. However, the precise determination of these energy levels and their variation when using different techniques makes it hard to compare and establish design rules. In this work, the energy levels of 33 organic semiconductors via cyclic voltammetry (CV), density functional theory, ultraviolet photoelectron spectroscopy, and low-energy inverse photoelectron spectroscopy are determined. Solar cells are fabricated to obtain key device parameters and relate them to the significant differences in the energy levels and offsets obtained from different methods. In contrast to CV, the photovoltaic gap measured using photoelectron spectroscopy (PES) correlates well with the experimental device VOC . It is demonstrated that high-performing systems such as PM6:Y6 and WF3F:Y6, which are previously reported to have negligible ionization energy (IE) offsets (ΔIE), possess sizable ΔIE of ≈0.5 eV, determined by PES. Using various D-A blends, it is demonstrated that ΔIE plays a key role in charge generation. In contrast to earlier reports, it is shown that a vanishing ΔIE is detrimental to device performance. Overall, these findings establish a solid base for reliably evaluating material energetics and interpreting property-performance relationships in organic solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA