Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 617(7960): 265-270, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165240

RESUMEN

Superposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality1-3 can be experimentally demonstrated in Bell tests4 performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes5 succeeded. Such experiments have been performed with spins in nitrogen-vacancy centres6, optical photons7-9 and neutral atoms10. Here we demonstrate a loophole-free violation of Bell's inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology11. To evaluate a Clauser-Horne-Shimony-Holt-type Bell inequality4, we deterministically entangle a pair of qubits12 and perform fast and high-fidelity measurements13 along randomly chosen bases on the qubits connected through a cryogenic link14 spanning a distance of 30 metres. Evaluating more than 1 million experimental trials, we find an average S value of 2.0747 ± 0.0033, violating Bell's inequality with a P value smaller than 10-108. Our work demonstrates that non-locality is a viable new resource in quantum information technology realized with superconducting circuits with potential applications in quantum communication, quantum computing and fundamental physics15.

2.
Phys Rev Lett ; 125(24): 240502, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412023

RESUMEN

High fidelity two-qubit gates exhibiting low cross talk are essential building blocks for gate-based quantum information processing. In superconducting circuits, two-qubit gates are typically based either on rf-controlled interactions or on the in situ tunability of qubit frequencies. Here, we present an alternative approach using a tunable cross-Kerr-type ZZ interaction between two qubits, which we realize with a flux-tunable coupler element. We control the ZZ-coupling rate over 3 orders of magnitude to perform a rapid (38 ns), high-contrast, low leakage (0.14±0.24%) conditional phase CZ gate with a fidelity of 97.9±0.7% as measured in interleaved randomized benchmarking without relying on the resonant interaction with a noncomputational state. Furthermore, by exploiting the direct nature of the ZZ coupling, we easily access the entire conditional phase gate family by adjusting only a single control parameter.

3.
Phys Rev Lett ; 122(18): 183601, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144878

RESUMEN

Networks of nonlinear resonators offer intriguing perspectives as quantum simulators for nonequilibrium many-body phases of driven-dissipative systems. Here, we employ photon correlation measurements to study the radiation fields emitted from a system of two superconducting resonators in a driven-dissipative regime, coupled nonlinearly by a superconducting quantum interference device, with cross-Kerr interactions dominating over on-site Kerr interactions. We apply a parametrically modulated magnetic flux to control the linear photon hopping rate between the two resonators and its ratio with the cross-Kerr rate. When increasing the hopping rate, we observe a crossover from an ordered to a delocalized state of photons. The presented coupling scheme is intrinsically robust to frequency disorder and may therefore prove useful for realizing larger-scale resonator arrays.

4.
Phys Rev Lett ; 119(14): 140504, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29053288

RESUMEN

We use a three-level artificial atom in the ladder configuration as a source of correlated, single microwave photons of different frequency. The artificial atom, a transmon-type superconducting circuit, is driven at the two-photon transition between ground and second-excited state, and embedded into an on-chip switch that selectively routes different-frequency photons into different spatial modes. Under continuous driving, we measure power cross-correlations between the two modes and observe a crossover between strong antibunching and superbunching, typical of cascade decay, and an oscillatory pattern as the drive strength becomes comparable to the radiative decay rate. By preparing the source in a superposition state using an excitation pulse, we achieve deterministic generation of entangled photon pairs, as demonstrated by nonvanishing phase correlations and more generally by joint quantum state tomography of the two itinerant photonic modes.

5.
Nat Commun ; 14(1): 7138, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932251

RESUMEN

Realizing the full potential of quantum technologies requires precise real-time control on time scales much shorter than the coherence time. Model-free reinforcement learning promises to discover efficient feedback strategies from scratch without relying on a description of the quantum system. However, developing and training a reinforcement learning agent able to operate in real-time using feedback has been an open challenge. Here, we have implemented such an agent for a single qubit as a sub-microsecond-latency neural network on a field-programmable gate array (FPGA). We demonstrate its use to efficiently initialize a superconducting qubit and train the agent based solely on measurements. Our work is a first step towards adoption of reinforcement learning for the control of quantum devices and more generally any physical device requiring low-latency feedback.

6.
Nat Commun ; 11(1): 4877, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985501

RESUMEN

Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. Generation of multi-mode entangled states of radiation with a large entanglement length, that is neither probabilistic nor restricted to generate specific types of states, remains challenging. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to N = 4 photonic modes and infer the quantum state for even larger N from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA