Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Infect Dis ; 224(3): 395-406, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33493287

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) clinical expression is pleiomorphic, severity is related to age and comorbidities such as diabetes and hypertension, and pathophysiology involves aberrant immune activation and lymphopenia. We wondered if the myeloid compartment was affected during COVID-19 and if monocytes and macrophages could be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Monocytes and monocyte-derived macrophages (MDMs) from COVID-19 patients and controls were infected with SARS-CoV-2 and extensively investigated with immunofluorescence, viral RNA extraction and quantification, and total RNA extraction followed by reverse-transcription quantitative polymerase chain reaction using specific primers, supernatant cytokines (interleukins 6, 10, and 1ß; interferon-ß; transforming growth factor-ß1, and tumor necrosis factor-α), and flow cytometry. The effect of M1- vs M2-type or no polarization prior to infection was assessed. RESULTS: SARS-CoV-2 efficiently infected monocytes and MDMs, but their infection is abortive. Infection was associated with immunoregulatory cytokines secretion and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In vitro polarization did not account for permissivity to SARS-CoV-2, since M1- and M2-type MDMs were similarly infected. In COVID-19 patients, monocytes exhibited lower counts affecting all subsets, decreased expression of HLA-DR, and increased expression of CD163, irrespective of severity. CONCLUSIONS: SARS-CoV-2 drives monocytes and macrophages to induce host immunoparalysis for the benefit of COVID-19 progression.SARS-CoV-2 infection of macrophages induces a specific M2 transcriptional program. In Covid-19 patients, monocyte subsets were decreased associated with up-expression of the immunoregulatory molecule CD163 suggesting that SARS-CoV-2 drives immune system for the benefit of Covid-19 disease progression.


Asunto(s)
COVID-19/inmunología , Macrófagos/virología , Monocitos/virología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Citocinas/metabolismo , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Adulto Joven
2.
Target Oncol ; 19(1): 95-106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38133710

RESUMEN

BACKGROUND: Palmitoyl-protein thioesterase-1 (PPT1) is a clinical stage druggable target for inhibiting autophagy in cancer. OBJECTIVE: We aimed to determine the cellular and molecular activity of targeting PPT1 using ezurpimtrostat, in combination with an anti-PD-1 antibody. METHODS: In this study we used a transgenic immunocompetent mouse model of hepatocellular carcinoma. RESULTS: Herein, we revealed that inhibition of PPT1 using ezurpimtrostat decreased the liver tumor burden in a mouse model of hepatocellular carcinoma by inducing the penetration of lymphocytes into tumors when combined with anti-programmed death-1 (PD-1). Inhibition of PPT1 potentiates the effects of anti-PD-1 immunotherapy by increasing the expression of major histocompatibility complex (MHC)-I at the surface of liver cancer cells and modulates immunity through recolonization and activation of cytotoxic CD8+ lymphocytes. CONCLUSIONS: Ezurpimtrostat turns cold tumors into hot tumors and, thus, could improve T cell-mediated immunotherapies in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tioléster Hidrolasas , Ratones , Humanos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Receptor de Muerte Celular Programada 1 , Ratones Transgénicos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Linfocitos/metabolismo
3.
Cells ; 12(13)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443736

RESUMEN

Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.


Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Antineoplásicos/farmacología , Autofagia
4.
Viruses ; 14(7)2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35891487

RESUMEN

During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Modelos Animales , Pandemias/prevención & control
5.
Viruses ; 14(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062337

RESUMEN

Since December 2019, SARS-CoV-2 has spread quickly worldwide, leading to more than 280 million confirmed cases, including over 5,000,000 deaths. Interestingly, coronaviruses were found to subvert and hijack autophagic process to allow their viral replication. Autophagy-modulating compounds thus rapidly emerged as an attractive strategy to fight SARS-CoV-2 infection, including the well-known chloroquine (CQ). Here, we investigated the antiviral activity and associated mechanism of GNS561/Ezurpimtrostat, a small lysosomotropic molecule inhibitor of late-stage autophagy. Interestingly, GNS561 exhibited antiviral activity of 6-40 nM depending on the viral strain considered, currently positioning it as the most powerful molecule investigated in SARS-CoV-2 infection. We then showed that GNS561 was located in lysosome-associated-membrane-protein-2-positive (LAMP2-positive) lysosomes, together with SARS-CoV-2. Moreover, GNS561 increased LC3-II spot size and caused the accumulation of autophagic vacuoles and the presence of multilamellar bodies, suggesting that GNS561 disrupted the autophagy mechanism. To confirm our findings, we used the K18-hACE2 mouse model and highlighted that GNS561 treatment led to a decline in SARS-CoV-2 virions in the lungs associated with a disruption of the autophagy pathway. Overall, our study highlights GNS561 as a powerful drug in the treatment of SARS-CoV-2 infection and supports the hypothesis that autophagy blockers could be an alternative strategy for COVID-19.


Asunto(s)
Antivirales/farmacología , Autofagia/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Autofagosomas/metabolismo , COVID-19/patología , COVID-19/virología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Lisosomas/metabolismo , Ratones , SARS-CoV-2/fisiología , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
6.
Liver Cancer ; 11(3): 268-277, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35949290

RESUMEN

Introduction: GNS561/Ezurpimtrostat is a first-in-class, orally bioavailable, small molecule that blocks cancer cell proliferation by inhibiting late-stage autophagy and dose-dependent build-up of enlarged lysosomes by interacting with the palmitoyl-protein thioesterase 1 (PPT1). Methods: This phase I, open-label, dose-escalation trial (3 + 3 design) explored two GNS561 dosing schedules: one single oral intake 3 times a week (Q3W) and twice daily (BID) continuous oral administration in patients with advanced hepatocellular carcinoma, cholangiocarcinoma, and pancreatic adenocarcinoma or colorectal adenocarcinomas with liver metastasis. The primary objective was to determine GNS561 recommended phase II dose (RP2D) and schedule. Secondary objectives included evaluation of the safety/tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of GNS561. Results: Dose escalation ranged from 50 to 400 mg Q3W to 200-300 mg BID. Among 26 evaluable patients for safety, 20 were evaluable for efficacy and no dose-limiting toxicity was observed. Adverse events (AEs) included gastrointestinal grade 1-2 events, primarily nausea and vomiting occurred in 13 (50%) and 14 (54%) patients, respectively, and diarrhea in 11 (42%) patients. Seven grade 3 AEs were reported (diarrhea, decreased appetite, fatigue, alanine aminotransferase, and aspartate aminotransferase increased). Q3W administration was associated with limited exposure and the BID schedule was preferred. At 200 mg BID GNS561, plasma and liver concentrations were comparable to active doses in animal models. Liver trough concentrations were much higher than in plasma a median time of 28 days of administration with a mean liver to plasma ratio of 9,559 (Min 149-Max 25,759), which is in accordance with rat preclinical data observed after repeated administration. PPT1 expression in cancer tissues in the liver was reduced upon GNS561 exposure. There was no complete or partial response. Five patients experienced tumor stable diseases (25%), including one minor response (-23%). Conclusion: Based on a favorable safety profile, exposure, and preliminary signal of activity, oral GNS561 RP2D was set at 200 mg BID. Studies to evaluate the antitumor activity of GNS561 in hepatocarcinoma cells and intrahepatic cholangiocarcinoma are to follow NCT03316222.

7.
Autophagy ; 18(3): 678-694, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34740311

RESUMEN

Hepatocellular carcinoma is the most frequent primary liver cancer. Macroautophagy/autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials. In this study, we demonstrated that GNS561, a new autophagy inhibitor, whose anticancer activity was previously linked to lysosomal cell death, displayed high liver tropism and potent antitumor activity against a panel of human cancer cell lines and in two hepatocellular carcinoma in vivo models. We showed that due to its lysosomotropic properties, GNS561 could reach and specifically inhibited its enzyme target, PPT1 (palmitoyl-protein thioesterase 1), resulting in lysosomal unbound Zn2+ accumulation, impairment of cathepsin activity, blockage of autophagic flux, altered location of MTOR (mechanistic target of rapamycin kinase), lysosomal membrane permeabilization, caspase activation and cell death. Accordingly, GNS561, for which a global phase 1b clinical trial in liver cancers was just successfully achieved, represents a promising new drug candidate and a hopeful therapeutic strategy in cancer treatment.Abbreviations: ANXA5:annexin A5; ATCC: American type culture collection; BafA1: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CCND1: cyclin D1; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; CQ: chloroquine; iCCA: intrahepatic cholangiocarcinoma; DEN: diethylnitrosamine; DMEM: Dulbelcco's modified Eagle medium; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; HDSF: hexadecylsulfonylfluoride; IC50: mean half-maximal inhibitory concentration; LAMP: lysosomal associated membrane protein; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3; LMP: lysosomal membrane permeabilization; MALDI: matrix assisted laser desorption ionization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; MRI: magnetic resonance imaging; NH4Cl: ammonium chloride; NtBuHA: N-tert-butylhydroxylamine; PARP: poly(ADP-ribose) polymerase; PBS: phosphate-buffered saline; PPT1: palmitoyl-protein thioesterase 1; SD: standard deviation; SEM: standard error mean; vs, versus; Zn2+: zinc ion; Z-Phe: Z-Phe-Tyt(tBu)-diazomethylketone; Z-VAD-FMK: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacología , Autofagosomas/metabolismo , Autofagia/fisiología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/farmacología
8.
J Cancer ; 12(18): 5432-5438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34405006

RESUMEN

Patients with advanced hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC) have a very poor prognosis due to the lack of efficient treatments. As observed in several other tumors, the effectiveness of treatments is mainly hampered by the presence of a highly tumorigenic sub-population of cancer cells called cancer stem cells (CSCs). Indeed, CSCs are resistant to chemotherapy and radiotherapy and can regenerate the tumor bulk. Hence, innovative drugs that are efficient against both bulk tumor cells and CSCs would likely improve cancer treatment. In this study, we demonstrated that GNS561, a new autophagy inhibitor that induces lysosomal cell death, showed significant activity against not only the whole tumor population but also a sub-population displaying CSC features (high ALDH activity and tumorsphere formation ability) in HCC and in liver mCRC cell lines. These results were confirmed in vivo in HCC from a DEN-induced cirrhotic rat model in which GNS561 decreased tumor growth and reduced the frequency of CSCs (CD90+CD45-). Thus, GNS561 offers great promise for cancer therapy by exterminating both the tumor bulk and the CSC sub-population. Accordingly, a global phase 1b clinical trial in liver cancers was recently completed.

9.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019791

RESUMEN

Plant roots influence the soil microbiota via physical interaction, secretion, and plant immunity. However, it is unclear whether the root fraction or soil is more important in determining the structure of the prokaryotic or eukaryotic community and whether this varies between plant species. Furthermore, the leaf (phyllosphere) and root microbiotas have a large overlap; however, it is unclear whether this results from colonization of the phyllosphere by the root microbiota. Soil, rhizosphere, rhizoplane, and root endosphere prokaryote-, eukaryote-, and fungus-specific microbiotas of four plant species were analyzed with high-throughput sequencing. The strengths of factors controlling microbiota structure were determined using permutational multivariate analysis of variance (PERMANOVA) statistics. The origin of the phyllosphere microbiota was investigated using a soil swap experiment. Global microbial kingdom analysis conducted simultaneously on multiple plants shows that cereals, legumes, and Brassicaceae establish similar prokaryotic and similar eukaryotic communities inside and on the root surface. While the bacterial microbiota is recruited from the surrounding soil, its profile is influenced by the root itself more so than by soil or plant species. However, in contrast, the fungal microbiota is most strongly influenced by soil. This was observed in two different soils and for all plant species examined. Microbiota structure is established within 2 weeks of plant growth in soil and remains stable thereafter. A reciprocal soil swap experiment shows that the phyllosphere is colonized from the soil in which the plant is grown.IMPORTANCE Global microbial kingdom analysis conducted simultaneously on multiple plants shows that cereals, legumes, and Brassicaceae establish similar prokaryotic and similar eukaryotic communities inside and on the root surface. While the bacterial microbiota is recruited from the surrounding soil, its profile is influenced by the root fraction more so than by soil or plant species. However, in contrast, the fungal microbiota is most strongly influenced by soil. This was observed in two different soils and for all plant species examined, indicating conserved adaptation of microbial communities to plants. Microbiota structure is established within 2 weeks of plant growth in soil and remains stable thereafter. We observed a remarkable similarity in the structure of a plant's phyllosphere and root microbiotas and show by reciprocal soil swap experiments that both fractions are colonized from the soil in which the plant is grown. Thus, the phyllosphere is continuously colonized by the soil microbiota.


Asunto(s)
Microbiota , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Plantas/microbiología , Microbiología del Suelo , Bacterias/clasificación , Hongos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas/clasificación , ARN Ribosómico 16S , Rizosfera
10.
bioRxiv ; 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33052342

RESUMEN

Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/2019-nCoV) has spread quickly worldwide, with more than 29 million cases and 920,000 deaths. Interestingly, coronaviruses were found to subvert and hijack the autophagic process to allow their viral replication. One of the spotlights had been focused on the autophagy inhibitors as a target mechanism effective in the inhibition of SARS-CoV-2 infection. Consequently, chloroquine (CQ) and hydroxychloroquine (HCQ), a derivative of CQ, was suggested as the first potentially be therapeutic strategies as they are known to be autophagy inhibitors. Then, they were used as therapeutics in SARS-CoV-2 infection along with remdesivir, for which the FDA approved emergency use authorization. Here, we investigated the antiviral activity and associated mechanism of GNS561, a small basic lipophilic molecule inhibitor of late-stage autophagy, against SARS-CoV-2. Our data indicated that GNS561 showed the highest antiviral effect for two SARS-CoV-2 strains compared to CQ and remdesivir. Focusing on the autophagy mechanism, we showed that GNS561, located in LAMP2-positive lysosomes, together with SARS-CoV-2, blocked autophagy by increasing the size of LC3-II spots and the accumulation of autophagic vacuoles in the cytoplasm with the presence of multilamellar bodies characteristic of a complexed autophagy. Finally, our study revealed that the combination of GNS561 and remdesivir was associated with a strong synergistic antiviral effect against SARS-CoV-2. Overall, our study highlights GNS561 as a powerful drug in SARS-CoV-2 infection and supports that the hypothesis that autophagy inhibitors could be an alternative strategy for SARS-CoV-2 infection.

11.
Front Microbiol ; 11: 132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117153

RESUMEN

The influence of wheat (modern wheat, both bread and pasta, their wild ancestors and synthetic hybrids) on the microbiota of their roots and surrounding soil is characterized. We isolated lines of bread wheat by hybridizing diploid (Aegilops tauschii) with tetraploid Triticum durum and crossed it with a modern cultivar of Triticum aestivum. The newly created, synthetic hybrid wheat, which recapitulate the breeding history of wheat through artificial selection, is found to support a microbiome enriched in beneficial Glomeromycetes fungi, but also in, potentially detrimental, Nematoda. We hypothesize that during wheat domestication this plant-microbe interaction diminished, suggesting an evolutionary tradeoff; sacrificing advantageous nutrient acquisition through fungal interactions to minimize interaction with pathogenic fungi. Increased plant selection for Glomeromycetes and Nematoda is correlated with the D genome derived from A. tauschii. Despite differences in their soil microbiota communities, overall wheat plants consistently show a low ratio of eukaryotes to prokaryotes. We propose that this is a mechanism for protection against soil-borne fungal disease and appears to be deeply rooted in the wheat genome. We suggest that the influence of plants on the composition of their associated microbiota is an integral factor, hitherto overlooked, but intrinsic to selection during wheat domestication.

12.
Ther Adv Chronic Dis ; 11: 2040622320942042, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32728410

RESUMEN

BACKGROUND: Hepatic fibrosis is the result of chronic liver injury that can progress to cirrhosis and lead to liver failure. Nevertheless, there are no anti-fibrotic drugs licensed for human use. Here, we investigated the anti-fibrotic activity of GNS561, a new lysosomotropic molecule with high liver tropism. METHODS: The anti-fibrotic effect of GNS561 was determined in vitro using LX-2 hepatic stellate cells (HSCs) and primary human HSCs by studying cell viability, activity of caspases 3/7, autophagic flux, cathepsin maturation and activity, HSC activation and transforming growth factor-ß1 (TGF-ß1) maturation and signaling. The contribution of GNS561 lysosomotropism to its anti-fibrotic activity was assessed by increasing lysosomal pH. The potency of GNS561 on fibrosis was evaluated in vivo in a rat model of diethylnitrosamine-induced liver fibrosis. RESULTS: GNS561 significantly decreased cell viability and promoted apoptosis. Disrupting the lysosomal pH gradient impaired its pharmacological effects, suggesting that GNS561 lysosomotropism mediated cell death. GNS561 impaired cathepsin activity, leading to defective TGF-ß1 maturation and autophagic processes. Moreover, GNS561 decreased HSC activation and extracellular matrix deposition by downregulating TGF-ß1/Smad and mitogen-activated proteine kinase signaling and inducing fibrolysis. Finally, oral administration of GNS561 (15 mg/kg per day) was well tolerated and attenuated diethylnitrosamine-induced liver fibrosis in this rat model (decrease of collagen deposition and of pro-fibrotic markers and increase of fibrolysis). CONCLUSION: GNS561 is a new potent lysosomotropic compound that could represent a valid medicinal option for hepatic fibrosis treatment through both its anti-fibrotic and its pro-fibrolytic effects. In addition, this study provides a rationale for targeting lysosomes as a promising therapeutic strategy in liver fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA