Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 520(7545): 78-81, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832405

RESUMEN

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16 - 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

2.
Nature ; 510(7505): 381-4, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24943953

RESUMEN

Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.

3.
Phys Chem Chem Phys ; 21(38): 21596-21602, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31538993

RESUMEN

Electronic structure modifications due to strain are an effective method for tailoring nano-scale functional materials. Demonstrated on nickel oxide (NiO) thin films, Resonant Inelastic X-ray Scattering (RIXS) at the transition-metal M2,3-edge is shown to be a powerful tool for measuring the electronic structure modification due to strain in the near-surface region. Analyses from the M2,3-edge RIXS in comparison with dedicated crystal field multiplet calculations show distortions in 40 nm NiO grown on a magnesium oxide (MgO) substrate (NiO/MgO) similar to those caused by surface relaxation of bulk NiO. The films of 20 and 10 nm NiO/MgO show slightly larger differences from bulk NiO. Quantitatively, the NiO/MgO samples all are distorted from perfect octahedral (Oh) symmetry with a tetragonal parameter Ds of about -0.1 eV, very close to the Ds distortion from octahedral (Oh) symmetry parameter of -0.11 eV obtained for the surface-near region from a bulk NiO crystal. Comparing the spectra of a 20 nm film of NiO grown on a 20 nm magnetite (Fe3O4) film on a MgO substrate (NiO/Fe3O4/MgO) with the calculated multiplet analyses, the distortion parameter Ds appears to be closer to zero, showing that the surface-near region of this templated film is less distorted from Oh symmetry than the surface-near region in bulk NiO. Finally, the potential of M2,3-edge RIXS for other investigations of strain on electronic structure is discussed.

4.
Nature ; 501(7466): 191-4, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23965622

RESUMEN

Resonant inelastic X-ray scattering and X-ray emission spectroscopy can be used to probe the energy and dispersion of the elementary low-energy excitations that govern functionality in matter: vibronic, charge, spin and orbital excitations. A key drawback of resonant inelastic X-ray scattering has been the need for high photon densities to compensate for fluorescence yields of less than a per cent for soft X-rays. Sample damage from the dominant non-radiative decays thus limits the materials to which such techniques can be applied and the spectral resolution that can be obtained. A means of improving the yield is therefore highly desirable. Here we demonstrate stimulated X-ray emission for crystalline silicon at photon densities that are easily achievable with free-electron lasers. The stimulated radiative decay of core excited species at the expense of non-radiative processes reduces sample damage and permits narrow-bandwidth detection in the directed beam of stimulated radiation. We deduce how stimulated X-ray emission can be enhanced by several orders of magnitude to provide, with high yield and reduced sample damage, a superior probe for low-energy excitations and their dispersion in matter. This is the first step to bringing nonlinear X-ray physics in the condensed phase from theory to application.

5.
Phys Rev Lett ; 121(13): 137403, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30312105

RESUMEN

Using ultrafast ≃2.5 fs and ≃25 fs self-amplified spontaneous emission pulses of increasing intensity and a novel experimental scheme, we report the concurrent increase of stimulated emission in the forward direction and loss of out-of-beam diffraction contrast for a Co/Pd multilayer sample. The experimental results are quantitatively accounted for by a statistical description of the pulses in conjunction with the optical Bloch equations. The dependence of the stimulated sample response on the incident intensity, coherence time, and energy jitter of the employed pulses reveals the importance of increased control of x-ray free electron laser radiation.

6.
J Chem Phys ; 149(4): 044307, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068152

RESUMEN

The prototypical photoinduced dissociation of Fe(CO)5 in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)5 successively dissociates to Fe(CO)4 and Fe(CO)3 along a pathway where both fragments retain the singlet multiplicity of Fe(CO)5. The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)4 and Fe(CO)3 with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valence-orbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3σ inner-valence and Fe 3p core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for how charge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy.

7.
Phys Chem Chem Phys ; 19(32): 21800-21806, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28783180

RESUMEN

The active ions in typical laser crystals were studied with Resonant Inelastic X-ray Scattering (RIXS) and Partial Fluorescence Yield X-ray Absorption (PFY-XAS) spectroscopies as solid state model systems for dilute active centers. We analyzed Ti3+ and Cr3+ in α-Al2O3:Ti3+ and LiCaAlF6:Cr3+, respectively. The comparison of experimental data with semi-empirical multiplet calculations provides insights into the electronic structure and shows how measured crystal field energies are related across different spectroscopies.

8.
J Chem Phys ; 146(21): 211103, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28595420

RESUMEN

We prove the hitherto hypothesized sequential dissociation of Fe(CO)5 in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)4 within the temporal resolution of the experiment and further to Fe(CO)3 within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)5, Fe(CO)4, and Fe(CO)3 showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)5 complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes.

9.
Phys Rev Lett ; 114(15): 156101, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933322

RESUMEN

We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

10.
Nat Mater ; 12(10): 882-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23892787

RESUMEN

As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.

11.
Insect Mol Biol ; 22(4): 399-410, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23668189

RESUMEN

The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue-specific and cold shock-induced gene expression. We identified the promoter sequences of Am-actin5c, elp2l, Am-hsp83 and Am-hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron-specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes.


Asunto(s)
Abejas/genética , Regulación de la Expresión Génica , Genes de Insecto , Regiones Promotoras Genéticas , Animales , Abejas/metabolismo , Encéfalo/metabolismo , Genes Reporteros , Células Sf9 , Temperatura
12.
Phys Rev Lett ; 110(18): 186101, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23683223

RESUMEN

We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.


Asunto(s)
Monóxido de Carbono/química , Rutenio/química , Adsorción , Rayos Láser , Simulación de Dinámica Molecular , Fonones , Propiedades de Superficie , Espectroscopía de Absorción de Rayos X/métodos
13.
Opt Express ; 20(10): 11396-406, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565760

RESUMEN

The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.


Asunto(s)
Óptica y Fotónica/métodos , Electroquímica/métodos , Electrónica , Electrones , Diseño de Equipo , Rayos Láser , Fotones , Semiconductores , Factores de Tiempo , Rayos X
14.
New Microbes New Infect ; 45: 100959, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35242337

RESUMEN

•Omicron variant continues to progress in Senegal with the appearance of new contaminations.•IRESSEF detected the first positive case of the Omicron variant on Friday, December 3, 2021.•Since this date, the number of Omicron variant infections has increased over the weeks.•Molecular surveillance of the Omicron variant is carried out in real time to inform the medical authorities.

15.
Rev Sci Instrum ; 92(5): 053703, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243258

RESUMEN

The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 µm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.

16.
Opt Lett ; 35(3): 372-4, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20125725

RESUMEN

We have measured the average single-pulse longitudinal coherence characteristics of FLASH, a self amplified spontaneous emission free electron laser, at extreme UV wavelengths. Electric field autocorrelation measurements in the time domain were enabled by a wavefront division beam splitter applied to a tunable delay Mach-Zehnder interferometer. These data agree with the spectral bandwidth measurements made in the frequency domain. They exhibit two correlation time scales and the measured coherence curves have relevant implications for single-shot measurements.

17.
Phys Rev Lett ; 105(18): 187401, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231136

RESUMEN

Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics of the charge-density wave in the Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1 ps, the system is driven across a phase transition from a long-range charge ordered state to a quasiequilibrium state with domainlike short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic-site selectivity.

18.
Struct Dyn ; 7(5): 054301, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953941

RESUMEN

We present the experimental end-station TRIXS dedicated to time-resolved soft x-ray resonant inelastic x-ray scattering (RIXS) experiments on solid samples at the free-electron laser FLASH. Using monochromatized ultrashort femtosecond XUV/soft x-ray photon pulses in combination with a synchronized optical laser in a pump-probe scheme, the TRIXS setup allows measuring sub-picosecond time-resolved high-resolution RIXS spectra in the energy range from 35 eV to 210 eV, thus spanning the M-edge (M1 and M2,3) absorption resonances of 3d transition metals and N4,5-edges of rare earth elements. A Kirkpatrick-Baez refocusing mirror system at the first branch of the plane grating monochromator beamline (PG1) provides a focus of (6 × 6) µm2 (FWHM) at the sample. The RIXS spectrometer reaches an energy resolution of 35-160 meV over the entire spectral range. The optical laser system based on a chirped pulse optical parametric amplifier provides approximately 100 fs (FWHM) long photon pulses at the fundamental wavelength of 800 nm and a fluence of 120 mJ/cm2 at a sample for optical pump-XUV probe measurements. Furthermore, optical frequency conversion enables experiments at 400 nm or 267 nm with a fluence of 80 and 30 mJ/cm2, respectively. Some of the first (pump-probe) RIXS spectra measured with this setup are shown. The measured time resolution for time-resolved RIXS measurements has been characterized as 287 fs (FWHM) for the used energy resolution.

19.
Phys Rev Lett ; 103(23): 237401, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-20366170

RESUMEN

Experimentally, we observe angular-momentum transfer in electron-phonon scattering, although it is commonly agreed that phonons transfer mostly linear momentum. Therefore, the incorporation of angular momentum to describe phonons is necessary already for simple semiconductors and bears significant implications for the formation of new quasiparticles in correlated functional materials. Separation of linear and angular-momentum transfer in electron-phonon scattering is achieved by highly selective excitations on the femtosecond time scale of resonant inelastic x-ray scattering.

20.
J Phys Condens Matter ; 31(1): 014003, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30504529

RESUMEN

With the intense and coherent x-ray pulses available from free-electron lasers, the possibility to transfer non-linear spectroscopic methods from the laser lab to the x-ray world arises. Advantages especially regarding selectivity and thus information content as well as an improvement of signal levels are expected. The use of coherences is especially fruitful and the example of coherent x-ray/optical sum-frequency generation is discussed. However, many non-linear x-ray methods still await discovery, partially due to the necessity for extremely adaptable and versatile instrumentation that can be brought to free-electron lasers for the analysis of the spectral content emitted from the sample into a continuous range of emission angles. Such an instrument (called MUSIX) is being developed and employed at FLASH, the free-electron laser in Hamburg and is described in this contribution together with first results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA