Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 83(14): 2509-2523.e13, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37402366

RESUMEN

K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.


Asunto(s)
MicroARNs , Neoplasias , Animales , Ratones , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Genes ras , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Proteómica
2.
Proc Natl Acad Sci U S A ; 121(45): e2417144121, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39471218

RESUMEN

Somatic mutations in the epidermal growth factor receptor (EGFR) are a major cause of non-small cell lung cancer. Among these structurally diverse alterations, exon 20 insertions represent a unique subset that rarely respond to EGFR tyrosine kinase inhibitors (TKIs). Therefore, there is a significant need to develop inhibitors that are active against this class of activating mutations. Here, we conducted biochemical analysis of the two most frequent exon 20 insertion variants, V769_D770insASV (insASV) and D770_N771insSVD (insSVD) to better understand their drug sensitivity and resistance. From kinetic studies, we found that EGFR insASV and insSVD are similarly active, but have lower Km, ATP values compared to the L858R variant, which contributes to their lack of sensitivity to 1st-3rd generation EGFR TKIs. Biochemical, structural, and cellular studies of a diverse panel of EGFR inhibitors revealed that the more recently developed compounds BAY-568, TAS6417, and TAK-788 inhibit EGFR insASV and insSVD in a mutant-selective manner, with BAY-568 being the most potent and selective versus wild-type (WT) EGFR. Cocrystal structures with WT EGFR reveal the binding modes of each of these inhibitors and of poziotinib, a potent but not mutantselective inhibitor, and together they define interactions shared by the mutant-selective agents. Collectively, our results show that these exon20 insertion variants are not inherently inhibitor resistant, rather they differ in their drug sensitivity from WT EGFR. However, they are similar to each other, indicating that a single inhibitor should be effective for several of the diverse exon 20 insertion variants.


Asunto(s)
Receptores ErbB , Exones , Inhibidores de Proteínas Quinasas , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Humanos , Exones/genética , Inhibidores de Proteínas Quinasas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Mutagénesis Insercional , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/genética
3.
Mol Pharmacol ; 105(2): 97-103, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164587

RESUMEN

Lung cancer is commonly caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric kinase inhibitors are unaffected by common ATP-site resistance mutations and represent a promising therapeutic strategy for targeting drug-resistant EGFR variants. However, allosteric inhibitors are antagonized by kinase dimerization, and understanding this phenomenon has been limited to cellular experiments. To facilitate the study of allosteric inhibitor pharmacology, we designed and purified a constitutive EGFR kinase dimer harboring the clinically relevant L858R/T790M mutations. Kinetic characterization revealed that the EGFR kinase dimer is more active than monomeric EGFR(L858R/T790M) kinase and has the same Km,ATP Biochemical profiling of a large panel of ATP-competitive and allosteric EGFR inhibitors showed that allosteric inhibitor potency decreased by >500-fold in the kinase dimer compared with monomer, yielding IC50 values that correlate well with Ba/F3 cellular potencies. Thus, this readily purifiable constitutive asymmetric EGFR kinase dimer represents an attractive tool for biochemical evaluation of EGFR inhibitor pharmacology, in particular for allosteric inhibitors. SIGNIFICANCE STATEMENT: Drugs targeting epidermal growth factor receptor (EGFR) kinase are commonly used to treat lung cancers but are affected by receptor dimerization. Here, we describe a locked kinase dimer that can be used to study EGFR inhibitor pharmacology.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Adenosina Trifosfato , Resistencia a Antineoplásicos
4.
J Biol Chem ; 299(5): 104634, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963492

RESUMEN

Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.


Asunto(s)
Modelos Moleculares , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Humanos , Línea Celular Tumoral , Cristalografía por Rayos X , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Estructura Molecular , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
5.
Bioorg Med Chem Lett ; 68: 128718, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378251

RESUMEN

The C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups. We explored a scaffold hopping approach to identify new series of allosteric EGFR inhibitors that retained good potency in the absence of the phenol group. The 5-F quinazolinone 34 demonstrated tumor regression in an H1975 efficacy model upon once daily oral dosing at 25 mg/kg.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutación , Fenoles , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico
6.
Proc Natl Acad Sci U S A ; 116(32): 15895-15900, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337679

RESUMEN

G protein-coupled receptor (GPCR) kinases (GRKs) are responsible for initiating desensitization of activated GPCRs. GRK5 is potently inhibited by the calcium-sensing protein calmodulin (CaM), which leads to nuclear translocation of GRK5 and promotion of cardiac hypertrophy. Herein, we report the architecture of the Ca2+·CaM-GRK5 complex determined by small-angle X-ray scattering and negative-stain electron microscopy. Ca2+·CaM binds primarily to the small lobe of the kinase domain of GRK5 near elements critical for receptor interaction and membrane association, thereby inhibiting receptor phosphorylation while activating the kinase for phosphorylation of soluble substrates. To define the role of each lobe of Ca2+·CaM, we utilized the natural product malbrancheamide as a chemical probe to show that the C-terminal lobe of Ca2+·CaM regulates membrane binding while the N-terminal lobe regulates receptor phosphorylation and kinase domain activation. In cells, malbrancheamide attenuated GRK5 nuclear translocation and effectively blocked the hypertrophic response, demonstrating the utility of this natural product and its derivatives in probing Ca2+·CaM-dependent hypertrophy.


Asunto(s)
Productos Biológicos/química , Calmodulina/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Calcio/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasa 5 del Receptor Acoplado a Proteína-G/química , Hipertrofia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación/efectos de los fármacos , Dominios Proteicos , Transporte de Proteínas/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
7.
J Biol Chem ; 294(24): 9390-9391, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201242

RESUMEN

Activating mutations in protein kinases are a frequent cause of cancer, and selecting drugs that act on these oncogenic kinases can lead to effective therapies. Targeted or whole-genome sequencing of tumor samples can readily reveal the presence of mutations, but discerning previously uncharacterized activating "driver" mutations that will respond to drug treatment from much more abundant but inconsequential "passenger" mutations is problematic. Chakroborty et al. apply a screening approach that leverages error-prone PCR and a proliferating cell model to identify such gain-of-function mutants in the epidermal growth factor receptor (EGFR) kinase. The screen is validated by the identification of known cancer-promoting mutations and reveals a previously unappreciated oncogenic EGFR mutation, A702V, demonstrating its power for discovery of driver mutations.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias Pulmonares/genética , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Fosforilación
8.
Protein Expr Purif ; 168: 105547, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31786308

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in humans and regulate numerous physiological processes through the activation of heterotrimeric G proteins. GPCR kinases (GRKs) selectively phosphorylate active GPCRs, which promotes arrestin binding, receptor internalization, and initiation of alternative signaling pathways. GRK5 is a representative member of one of three GRK subfamilies that does not need post-translational lipidation or other binding partners to exhibit full activity against GPCRs, rendering it a useful tool for biophysical studies directed at characterizing GRK function. However, recombinant expression of GRK5 has thus far been limited to insect and mammalian systems. Here, we describe the expression of functional GRK5 in E. coli and its purification and biochemical characterization. Bacterially expressed GRK5 is hyperphosphorylated, primarily in regions known to be flexible from prior crystal structures, which slightly decreases its catalytic activity toward receptor substrates. Mutation of a single phosphorylation site, Thr10, restores kinetic parameters to those of GRK5 purified from insect cells. Consequently, bacterial expression will allow for production of GRK5 at a reduced cost and faster pace and would facilitate production of isotopically labeled kinase for NMR studies or for the incorporation of unnatural amino acids.


Asunto(s)
Adenosina Trifosfato/química , Quinasa 5 del Receptor Acoplado a Proteína-G/química , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
9.
J Labelled Comp Radiopharm ; 62(5): 202-208, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30828860

RESUMEN

As part of a program toward making analogues of amlexanox (1), currently under clinical investigation for the treatment of type 2 diabetes and obesity, we have synthesized derivative 5 in which deuterium has been introduced into two sites of metabolism on the C-7 isopropyl function of amlexanox. The synthesis of 5 was completed in an efficient three-step process utilizing reduction of key olefin 7b to 8 by Wilkinson's catalyst to provide specific incorporation of di-deuterium across the double bond. Compound 5 displayed nearly equivalent potency to amlexanox (IC50 , 1.1µM vs 0.6µM, respectively) against recombinant human TBK1. When incubated with human, rat, and mouse liver microsomes, amlexanox (1) and d2 -amlexanox (5) were stable (t1/2  > 60 minutes) with 1 showing marginally greater stability relative to 5 except for rat liver microsomes. These data show that incorporating deuterium into two sites of metabolism does not majorly suppress Cyp-mediated metabolism relative to amlexanox.


Asunto(s)
Aminopiridinas/síntesis química , Aminopiridinas/metabolismo , Deuterio/química , Microsomas/metabolismo , Aminopiridinas/química , Aminopiridinas/farmacología , Animales , Técnicas de Química Sintética , Estabilidad de Medicamentos , Humanos , Marcaje Isotópico , Cinética , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Ratas
10.
Mol Pharmacol ; 94(4): 1210-1219, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30082428

RESUMEN

Chronic low-grade inflammation is a hallmark of obesity, which is a risk factor for the development of type 2 diabetes. The drug amlexanox inhibits IκB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) to promote energy expenditure and improve insulin sensitivity. Clinical studies have demonstrated efficacy in a subset of diabetic patients with underlying adipose tissue inflammation, albeit with moderate potency, necessitating the need for improved analogs. Herein we report crystal structures of TBK1 in complex with amlexanox and a series of analogs that modify its carboxylic acid moiety. Removal of the carboxylic acid or mutation of the adjacent Thr156 residue significantly reduces potency toward TBK1, whereas conversion to a short amide or ester nearly abolishes the inhibitory effects. IKKε is less affected by these modifications, possibly due to variation in its hinge that allows for increased conformational plasticity. Installation of a tetrazole carboxylic acid bioisostere improved potency to 200 and 400 nM toward IKKε and TBK1, respectively. Despite improvements in the in vitro potency, no analog produced a greater response in adipocytes than amlexanox, perhaps because of altered absorption and distribution. The structure-activity relationships and cocrystal structures described herein will aid in future structure-guided inhibitor development using the amlexanox pharmacophore for the treatment of obesity and type 2 diabetes.


Asunto(s)
Aminopiridinas/farmacología , Ácidos Carboxílicos/farmacología , Quinasa I-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad
11.
J Biol Chem ; 292(39): 16032-16043, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808053

RESUMEN

G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs.


Asunto(s)
Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Regulación Alostérica , Sustitución de Aminoácidos , Animales , Línea Celular , Biología Computacional , Cristalografía por Rayos X , Bases de Datos de Proteínas , Transferencia de Energía , Activación Enzimática , Sistemas Especialistas , Quinasa 5 del Receptor Acoplado a Proteína-G/química , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Humanos , Insectos , Cinética , Simulación de Dinámica Molecular , Fosforilación , Mutación Puntual , Análisis de Componente Principal , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
12.
Bioorg Med Chem ; 26(20): 5443-5461, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30270002

RESUMEN

The non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and inhibitor of nuclear factor kappa-B kinase ε (IKKε) play a key role in insulin-independent pathways that promote energy storage and block adaptive energy expenditure during obesity. Utilizing docking calculations and the x-ray structure of TBK1 bound to amlexanox, an inhibitor of these kinases with modest potency, a series of analogues was synthesized to develop a structure activity relationship (SAR) around the A- and C-rings of the core scaffold. A strategy was developed wherein R7 and R8 A-ring substituents were incorporated late in the synthetic sequence by utilizing palladium-catalyzed cross-coupling reactions on appropriate bromo precursors. Analogues display IC50 values as low as 210 nM and reveal A-ring substituents that enhance selectivity toward either kinase. In cell assays, selected analogues display enhanced phosphorylation of p38 or TBK1 and elicited IL-6 secretion in 3T3-L1 adipocytes better than amlexanox. An analogue bearing a R7 cyclohexyl modification demonstrated robust IL-6 production in 3T3-L1 cells as well as a phosphorylation marker of efficacy and was tested in obese mice where it promoted serum IL-6 response, weight loss, and insulin sensitizing effects comparable to amlexanox. These studies provide impetus to expand the SAR around the amlexanox core toward uncovering analogues with development potential.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Obesidad/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Células 3T3-L1 , Aminación , Animales , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Cromanos/síntesis química , Cromanos/química , Cromanos/farmacología , Cromanos/uso terapéutico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Quinasa I-kappa B/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Obesidad/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/síntesis química , Piridinas/uso terapéutico
13.
ChemMedChem ; 19(12): e202300343, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38523074

RESUMEN

A novel macrocyclic inhibitor of mutant EGFR (BI-4020) has shown promise in pre-clinical studies of T790M and C797S drug-resistant non-small cell lung cancer. To better understand the molecular basis for BI-4020 selectivity and potency, we have carried out biochemical activity assays and structural analysis with X-ray crystallography. Biochemical potencies agree with previous studies indicating that BI-4020 is uniquely potent against drug-resistant L858R/T790M and L858R/T790M/C797S variants. X-ray structures with wild-type (2.4 Å) and T790M/V948R (3.1 Å) EGFR kinase domains show that BI-4020 is likely rendered selective due to interactions with the kinase domain hinge region as well as T790M, akin to Osimertinib. Additionally, BI-4020 is also rendered more potent due to its constrained macrocycle geometry as well as additional H-bonds to conserved K745 and T845 residues in both active and inactive conformations. These findings taken together show how this novel macrocyclic inhibitor is both highly potent and selective for mutant EGFR in a reversible mechanism and motivate structure-inspired approaches to developing targeted therapies in medicinal oncology.


Asunto(s)
Receptores ErbB , Compuestos Macrocíclicos , Inhibidores de Proteínas Quinasas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Humanos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Cristalografía por Rayos X , Relación Estructura-Actividad , Estructura Molecular , Modelos Moleculares , Sitios de Unión , Relación Dosis-Respuesta a Droga , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química
14.
ACS Cent Sci ; 10(6): 1156-1166, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38947214

RESUMEN

A systematic strategy to develop dual-warhead inhibitors is introduced to circumvent the limitations of conventional covalent inhibitors such as vulnerability to mutations of the corresponding nucleophilic residue. Currently, all FDA-approved covalent small molecules feature one electrophile, leaving open a facile route to acquired resistance. We conducted a systematic analysis of human proteins in the protein data bank to reveal ∼400 unique targets amendable to dual covalent inhibitors, which we term "molecular bidents". We demonstrated this strategy by targeting two kinases: MKK7 and EGFR. The designed compounds, ZNL-8162 and ZNL-0056, are ATP-competitive inhibitors that form two covalent bonds with cysteines and retain potency against single cysteine mutants. Therefore, molecular bidents represent a new pharmacological modality with the potential for improved selectivity, potency, and drug resistance profile.

15.
J Med Chem ; 67(4): 2837-2848, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38300264

RESUMEN

The pyrazolopyrimidine (PP) heterocycle is a versatile and widely deployed core scaffold for the development of kinase inhibitors. Typically, a 4-amino-substituted pyrazolopyrimidine binds in the ATP-binding pocket in a conformation analogous to the 6-aminopurine of ATP. Here, we report the discovery of ZNL0325 which exhibits a flipped binding mode where the C3 position is oriented toward the ribose binding pocket. ZNL0325 and its analogues feature an acrylamide side chain at the C3 position which is capable of forming a covalent bond with multiple kinases that possess a cysteine at the αD-1 position including BTK, EGFR, BLK, and JAK3. These findings suggest that the ability to form a covalent bond can override the preferred noncovalent binding conformation of the heterocyclic core and provides an opportunity to create structurally distinct covalent kinase inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Adenosina Trifosfato , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo
16.
Commun Chem ; 7(1): 38, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378740

RESUMEN

Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.

17.
Methods Enzymol ; 685: 171-198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37245901

RESUMEN

Specificity for a desired enzyme target is an essential property of small-molecule inhibitors. Molecules targeting oncogenic driver mutations in the epidermal growth factor receptor (EGFR) kinase domain have had a considerable clinical impact due to their selective binding to cancer-causing mutants compared to wild type. Despite the availability of clinically approved drugs for cancers driven by EGFR mutants, persistent challenges in drug resistance in the past decades have led to newer generations of drugs with divergent chemical structures. The current clinical challenges are mainly due to acquired resistance to third-generation inhibitors, including by the acquisition of the C797S mutation. Several diverse fourth-generation candidates and tool compounds that inhibit the C797S mutant have emerged, and their structural characterization has revealed molecular factors that allow for EGFR mutant selective binding. Here, we have reviewed all known structurally-characterized EGFR TKIs targeting clinically-relevant mutations to identify specific features that enable C797S inhibition. Newer generation EGFR inhibitors exhibit consistent and previously underutilized hydrogen bonding interactions with the conserved K745 and D855 residue side chains. We also consider binding modes and hydrogen bonding interactions of inhibitors targeting the classical ATP and the more unique allosteric sites.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación
18.
Biochem Biophys Rep ; 29: 101191, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34988297

RESUMEN

Oncogenic mutations in KRAS result in a constitutively active, GTP-bound form that in turn activates many proliferative pathways. However, because of its compact and simple architecture, directly targeting KRAS with small molecule drugs has been challenging. Another approach is to identify targetable proteins that interact with KRAS. Argonaute 2 (AGO2) was recently identified as a protein that facilitates RAS-driven oncogenesis. Whereas previous studies described the in vivo effect of AGO2 on cancer progression in cells harboring mutated KRAS, here we sought to examine their direct interaction using purified proteins. We show that full length AGO2 co-immunoprecipitates with KRAS using purified components, however, a complex between FL AGO2 and KRAS could not be isolated. We also generated a smaller N-terminal fragment of AGO2 (NtAGO2) which is believed to represent the primary binding site of KRAS. A complex with NtAGO2 could be detected via ion-mobility mass spectrometry and size exclusion chromatography. However, the data suggest that the interaction of KRAS with purified AGO2 (NtAGO2 or FL AGO2) is weak and likely requires additional cellular components or proteo-forms of AGO2 that are not readily available in our purified assay systems. Future studies are needed to determine what conformation or modifications of AGO2 are necessary to enrich KRAS association and regulate its activities.

19.
J Med Chem ; 65(23): 15679-15697, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36384036

RESUMEN

Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon 19 (Del19) and the missense mutation L858R, which both lead to increased activity and sensitization of NSCLC to EGFR inhibition. The first approved EGFR inhibitors used for first-line treatment of NSCLC, gefitinib and erlotinib, are quinazoline-based. However, both inhibitors have several known off-targets, and they also potently inhibit wild-type (WT) EGFR, resulting in side effects. Here, we applied a macrocyclic strategy on a quinazoline-based scaffold as a proof-of-concept study with the goal of increasing kinome-wide selectivity of this privileged inhibitor scaffold. Kinome-wide screens and SAR studies yielded 3f, a potent inhibitor for the most common EGFR mutation (EGFR Del19: 119 nM) with selectivity against the WT receptor (EGFR: >10 µM) and the kinome.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quinazolinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Prueba de Estudio Conceptual , Receptores ErbB/genética
20.
Nat Commun ; 13(1): 2530, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534503

RESUMEN

Lung cancer is frequently caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric EGFR inhibitors offer promise as the next generation of therapeutics, as they are unaffected by common ATP-site resistance mutations and synergize with the drug osimertinib. Here, we examine combinations of ATP-competitive and allosteric inhibitors to better understand the molecular basis for synergy. We identify a subset of irreversible EGFR inhibitors that display positive binding cooperativity and synergy with the allosteric inhibitor JBJ-04-125-02 in several EGFR variants. Structural analysis of these complexes reveals conformational changes occur mainly in the phosphate-binding loop (P-loop). Mutation of F723 in the P-loop reduces cooperative binding and synergy, supporting a mechanism in which F723-mediated contacts between the P-loop and the allosteric inhibitor are critical for synergy. These structural and mechanistic insights will aid in the identification and development of additional inhibitor combinations with potential clinical value.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Pulmonares , Adenosina Trifosfato , Compuestos de Anilina , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Humanos , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA