RESUMEN
BACKGROUND: Disulfide-rich peptides (DRPs) are found throughout nature. They are suitable scaffolds for drug development due to their small cores, whose disulfide bonds impart extraordinary chemical and biological stability. A challenge in developing a DRP therapeutic is to engineer binding to a specific target. This challenge can be overcome by (i) sampling the large sequence space of a given scaffold through a phage display library and by (ii) panning multiple libraries encoding structurally distinct scaffolds. Here, we implement a protocol for defining these diverse scaffolds, based on clustering structurally defined DRPs according to their conformational similarity. RESULTS: We developed and applied a hierarchical clustering protocol based on DRP structural similarity, followed by two post-processing steps, to classify 806 unique DRP structures into 81 clusters. The 20 most populated clusters comprised 85% of all DRPs. Representative scaffolds were selected from each of these clusters; the representatives were structurally distinct from one another, but similar to other DRPs in their respective clusters. To demonstrate the utility of the clusters, phage libraries were constructed for three of the representative scaffolds and panned against interleukin-23. One library produced a peptide that bound to this target with an IC50 of 3.3 µM. CONCLUSIONS: Most DRP clusters contained members that were diverse in sequence, host organism, and interacting proteins, indicating that cluster members were functionally diverse despite having similar structure. Only 20 peptide scaffolds accounted for most of the natural DRP structural diversity, providing suitable starting points for seeding phage display experiments. Through selection of the scaffold surface to vary in phage display, libraries can be designed that present sequence diversity in architecturally distinct, biologically relevant combinations of secondary structures. We supported this hypothesis with a proof-of-concept experiment in which three phage libraries were constructed and panned against the IL-23 target, resulting in a single-digit µM hit and suggesting that a collection of libraries based on the full set of 20 scaffolds increases the potential to identify efficiently peptide binders to a protein target in a drug discovery program.
Asunto(s)
Disulfuros/metabolismo , Descubrimiento de Drogas/métodos , Interleucina-23/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Secuencia de Aminoácidos , Bacteriófagos/genética , Análisis por Conglomerados , Humanos , Péptidos/química , Homología de Secuencia de AminoácidoRESUMEN
Erythropoietin (EPO) has been shown to protect the heart against acute myocardial infarction in pre-clinical studies, however, EPO failed to reduce infarct size in clinical trials and showed significant safety problems. Here, we investigated cardioprotective effects of two selective non-erythropoietic EPO receptor ligand dimeric peptides (AF41676 and AF43136) lacking erythropoietic activity, EPO, and the prolonged half-life EPO analogue, darbepoetin in acute myocardial infarction (AMI) in rats. In a pilot study, EPO at 100U/mL significantly decreased cell death compared to vehicle (33.8±2.3% vs. 40.3±1.5%, p<0.05) in rat neonatal cardiomyocytes subjected to simulated ischemia/reperfusion. In further studies (studies 1-4), in vivo AMI was induced by 30min coronary occlusion and 120min reperfusion in male Wistar rats. Test compounds and positive controls for model validation (B-type natriuretic peptide, BNP or cyclosporine A, CsA) were administered iv. before the onset of reperfusion. Infarct size (IS) was measured by standard TTC staining. In study 1, 5000U/kg EPO reduced infarct size significantly compared to vehicle (45.3±4.8% vs. 59.8±4.5%, p<0.05). In study 2, darbepoetin showed a U-shaped dose-response curve with maximal infarct size-reducing effect at 5µg/kg compared to the vehicle (44.4±5.7% vs. 65.9±2.7%, p<0.01). In study 3, AF41676 showed a U-shaped dose-response curve, where 3mg/kg was the most effective dose compared to the vehicle (24.1±3.9% vs. 44.3±2.5%, p<0.001). The positive control BNP significantly decreased infarct size in studies 1-3 by approximately 35%. In study 4, AF43136 at 10mg/kg decreased infarct size, similarly to the positive control CsA compared to the appropriate vehicle (39.4±5.9% vs. 58.1±5.4% and 45.9±2.4% vs. 63.8±4.1%, p<0.05, respectively). This is the first demonstration that selective, non-erythropoietic EPO receptor ligand dimeric peptides AF41676 and AF43136 administered before reperfusion are able to reduce infarct size in a rat model of AMI. Therefore, non-erythropoietic EPO receptor peptide ligands may be promising cardioprotective agents.
Asunto(s)
Cardiotónicos/farmacología , Eritropoyetina/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Miocardio/metabolismo , Animales , Ligandos , Masculino , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/farmacología , Proyectos Piloto , Ratas , Ratas WistarRESUMEN
The interleukin (IL)-23 pathway is a pathogenic driver in psoriasis, psoriatic arthritis, and inflammatory bowel disease. Currently, no oral therapeutics selectively target this pathway. JNJ-77242113 is a peptide targeting the IL-23 receptor with high affinity (KD: 7.1 pM). In human cells, JNJ-77242113 potently and selectively inhibited proximal IL-23 signaling (IC50: 5.6 pM) without impacting IL-12 signaling. JNJ-77242113 inhibited IL-23-induced interferon (IFN)γ production in NK cells, and in blood from healthy donors and psoriasis patients (IC50: 18.4, 11 and 9 pM, respectively). In a rat trinitrobenzene sulfonic acid-induced colitis model, oral JNJ-77242113 attenuated disease parameters at doses ≥ 0.3 mg/kg/day. Pharmacologic activity beyond the gastrointestinal tract was also demonstrated. In blood from rats receiving oral JNJ-77242113, dose-dependent inhibition of ex vivo IL-23-stimulated IL-17A production was observed. In an IL-23-induced rat skin inflammation model, JNJ-77242113 inhibited IL-23-induced skin thickening and IL-17A, -17F and -22 gene induction. Oral dosing of JNJ-77242113 in healthy human volunteers inhibited ex vivo IL-23-stimulated IFNγ production in whole blood. Thus, JNJ-77242113 provided selective, systemic IL-23 pathway inhibition in preclinical models which translated to pharmacodynamic activity in healthy human volunteers, supporting the potential for JNJ-77242113 as a selective oral therapy for IL-23-driven immune-mediated diseases.
Asunto(s)
Interleucina-23 , Receptores de Interleucina , Animales , Humanos , Ratas , Interleucina-23/metabolismo , Administración Oral , Receptores de Interleucina/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Péptidos/farmacología , Péptidos/administración & dosificación , Femenino , Ratas Sprague-DawleyRESUMEN
Alkali atoms trapped in solid hydrogen matrices have demonstrated ultralong electron spin coherence times and are promising as quantum sensors. Their spin coherence is limited by magnetic noise from naturally occurring orthohydrogen molecules in the parahydrogen matrix. In the gas phase, the orthohydrogen component of hydrogen can be converted to parahydrogen by flowing it over a catalyst held at cryogenic temperatures, with lower temperatures giving a lower orthohydrogen fraction. In this work, we use a single cryostat to reduce the orthohydrogen fraction of hydrogen gas and grow a solid matrix from the resulting high-purity parahydrogen. We demonstrate the operation of the catalyst down to a temperature of 8 K, and we spectroscopically verify that orthohydrogen impurities in the resulting solid are at a level <10-6. We also find that, at sufficiently low temperatures, the cryogenic catalyst provides isotopic purification, reducing the HD fraction.
RESUMEN
We have synthesized and evaluated a series of triaryl sulfonamide-based PTP1B inhibitors in which a difluoro-methylenephosphonate group of a potent lead has been replaced by potential bioisosteric replacements. Several mono- or di-charged compounds (8a, 8b, and 15a) were shown exhibit inhibitory activity in the low micromolar range, demonstrating the feasibility of using this approach in identifying non-phosphonate pTyr mimetics in a small molecular scaffold. These results also provide a useful indication of the relative effectiveness of these pTyr mimetics.
Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Compuestos de Flúor/síntesis química , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Sulfonamidas/química , Inhibidores Enzimáticos/química , Compuestos de Flúor/química , Compuestos de Flúor/farmacología , Estructura Molecular , Compuestos Organofosforados/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-ActividadRESUMEN
Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.
Asunto(s)
Interleucina-6/antagonistas & inhibidores , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Diseño de Fármacos , Semivida , Humanos , Hibridomas , Interleucina-6/química , Interleucina-6/metabolismo , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina-6/química , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Células U937Asunto(s)
Descubrimiento de Drogas , Neoplasias/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Imitación Molecular , Datos de Secuencia MolecularRESUMEN
A series of novel sulfonamides containing a single difluoromethylene-phosphonate group were discovered to be potent inhibitors of protein tyrosine phosphatase 1B. Structure-activity relationships around the scaffold were investigated, leading to the identification of compounds with IC50 or Ki values in the low nanomolar range. These sulfonamide-based inhibitors exhibit 100 and 30 times higher inhibitory activity than the corresponding tertiary amines and carboxamides, respectively.
Asunto(s)
Hipoglucemiantes/síntesis química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Sulfonamidas/síntesis química , Animales , Humanos , Hipoglucemiantes/farmacología , Concentración 50 Inhibidora , Organofosfonatos/síntesis química , Organofosfonatos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Relación Estructura-Actividad , Sulfonamidas/farmacologíaRESUMEN
The World Health Organization's global programme for the control of acute respiratory infections relies on counting respiratory rate (RR) by observing abdominal and chest movements in order to diagnose pneumonia. However, few studies on the reliability of the observation method have been published. We counted RR simultaneously by observation and auscultation in 100 healthy infants at 1, 2, 4, 6 and 8 weeks of age for 15, 30 and 60 sec, and compared RRs obtained by the two methods. In all the age groups studied, the co-efficients of variation for the RRs recorded by observation or auscultation were similar. The mean RR by observation was higher by 1-3 breaths/min than mean RR by auscultation (p < 0.001). The 95% confidence interval (+/-2 SD) for the difference between RR by the two methods ranged from +5 to -8 breaths/min for RR counted for 1 full minute. Our data support the assumption that observation is as reliable as auscultation for counting RR.
Asunto(s)
Auscultación , Respiración , Factores de Edad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Variaciones Dependientes del Observador , Pruebas de Función Respiratoria/métodos , Ruidos Respiratorios/fisiologíaRESUMEN
The preparation of novel N-Boc-alpha-amino-5-acyl Meldrum's acids is described. The synthetic inaccessibility and instability of several of these products have led to the development of a protocol that allows the synthesis of their corresponding 4-(dimethylamino)pyridine (DMAP) salts (5-AMA-DMAP's), which exhibit superior stability compared to that of the free 5-AMA. A simple and expedient ion-exchange method was developed for the quantitative removal of DMAP to liberate the synthetically useful DMAP-free form when needed.
RESUMEN
A novel series of inhibitors that contain an aryl alpha,alpha-difluoro-beta-ketophosphonate group has been synthesized and evaluated against protein tyrosine phosphatase 1B. These compounds exhibit strong inhibitory activity, the best of which has a K(i) value of 0.17 microM. These results demonstrate that aryl alpha,alpha-difluoro-beta-ketophosphonates are powerful phosphotyrosine mimetics for the development of potent PTP inhibitors.