Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 299(10): 105199, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660904

RESUMEN

Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein termed von Willebrand factor type A interacting with AAA+ ATPase (ViaA). RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Through this association, RavA and ViaA modulate the activity of the Frd complex and, hence, are proposed to have chaperone-like activity. However, the functional role of RavA-ViaA in the cell is not yet well established. We had demonstrated that RavA-ViaA can sensitize E. coli cells to sublethal concentrations of the aminoglycoside class of antibiotics. Since Frd has been associated with bacterial persistence against antibiotics, the relationship of RavA-ViaA and Frd was explored within this context. Experiments performed here reveal a function of RavA-ViaA in bacterial persistence upon treatment with antibiotics through the association of the chaperone complex with Frd. As part of this work, the NMR structure of the N-terminal domain of ViaA was solved. The structure reveals a novel alpha helical fold, which we name the VAN fold, that has not been observed before. We show that this domain is required for the function of the chaperone complex. We propose that modulating the levels of RavA-ViaA could enhance the susceptibility of Gram-negative bacteria to antibiotics.

2.
J Phys Chem A ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852937

RESUMEN

MoxR proteins comprise a family of ATPases Associated with diverse cellular Activities (AAA+). These proteins are widespread and found across the diversity of prokaryotic species. Despite their ubiquity, members of the group remain poorly characterized. Only a few examples of MoxR proteins have been associated with cellular roles, where they have been shown to perform chaperone-like functions. A characteristic feature of MoxR proteins is their association with proteins containing the von Willebrand factor type A (VWA) domain. In an effort to understand the spread and diversity of the MoxR family, an evolutionary approach was undertaken. Phylogenetic techniques were used to define nine major subfamilies within the MoxR family. A combination of phylogenetic and genomic approaches was utilized to explore the extent of the partnership between the MoxR and VWA domain containing proteins (VWA proteins). These analyses led to the clarification of genetic linkages between MoxR and VWA proteins. A significant partnership is described here, as seven of nine MoxR subfamilies were found to be linked to VWA proteins. Available genomic data were also used to assess the intraprotein diversification of MoxR and VWA protein sequences. Data clearly indicated that, in MoxR proteins, the ATPase domain is maintained with high conservation while the remaining protein sequence evolves at a faster rate; a similar pattern was observed for the VWA domain in VWA proteins. Overall, our data present insights into the modular evolution of MoxR ATPases.

3.
Adv Exp Med Biol ; 883: 271-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26621473

RESUMEN

In the dense cellular environment, protein misfolding and inter-molecular protein aggregation compete with protein folding. Chaperones associate with proteins to prevent misfolding and to assist in folding to the native state. In Escherichia coli, the chaperones trigger factor, DnaK/DnaJ/GrpE, and GroEL/ES are the major chaperones responsible for insuring proper de novo protein folding. With multitudes of proteins produced by the bacterium, the chaperones have to be selective for their substrates. Yet, chaperone selectivity cannot be too specific. Recent biochemical and high-throughput studies have provided important insights highlighting the strategies used by chaperones in maintaining proteostasis in the cell. Here, we discuss the substrate networks and cooperation among these protein folding chaperones.


Asunto(s)
Chaperonina 60/fisiología , Proteínas de Escherichia coli/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Chaperonas Moleculares/fisiología , Isomerasa de Peptidilprolil/fisiología , Chaperonina 10/química , Chaperonina 10/fisiología , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/fisiología , Isomerasa de Peptidilprolil/química , Pliegue de Proteína
4.
Antonie Van Leeuwenhoek ; 105(1): 143-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166034

RESUMEN

All species from the phylum Thermotogae, class Thermotogae, are currently part of a single family, Thermotogaceae. Using genomic data from 17 Thermotogae species, detailed phylogenetic and comparative genomic analyses were carried out to understand their evolutionary relationships and identify molecular markers that are indicative of species relationships within the phylum. In the 16S rRNA gene tree and phylogenetic trees based upon two different large sets of proteins, members of the phylum Thermotogae formed a number of well-resolved clades. Character compatibility analysis on the protein sequence data also recovered a single largest clique that exhibited similar topology to the protein trees and where all nodes were supported by multiple compatible characters. Comparative genomic analyses have identified 85 molecular markers, in the form of conserved signature indels (CSIs), which are specific for different observed clades of Thermotogae at multiple phylogenetic depths. Eleven of these CSIs were specific for the phylum Thermotogae whereas nine others supported a clade comprising of the genera Thermotoga, Thermosipho and Fervidobacterium. Ten other CSIs provided evidence that the genera Thermosipho and Fervidobacterium shared a common ancestor exclusive of the other Thermotogae and four and eight CSIs in other proteins were specific for the genera Thermosipho and Fervidobacterium, respectively. Two other deep branching clades, one consisting of the genera Kosmotoga and Mesotoga and the other comprising of the genera Petrotoga and Marinitoga, were also supported by multiple CSIs. Based upon the consistent branching of the Thermotogae species using different phylogenetic approaches, and numerous identified CSIs supporting the distinctness of different clades, it is proposed that the class Thermotogae should be divided into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.). Additionally, the results of our phylogenetic/compatibility studies along with the species distribution patterns of 22 identified CSIs, provide compelling evidence that the current genus Thermotoga is comprised of two evolutionary distinct groups and that it should be divided into two genera. It is proposed that the emended genus Thermotoga should retain only the species Thermotoga maritima, Tt. neapolitana, Tt. petrophila, Tt. naphthophila, Thermotoga sp. EMP, Thermotoga sp. A7A and Thermotoga sp. RQ2 while the other Thermotoga species (viz. Tt. lettingae, Tt. thermarum, Tt. elfii, Tt. subterranean and Tt. hypogea) be transferred to a new genus, Pseudothermotoga gen. nov.


Asunto(s)
Bacterias/clasificación , Secuencia de Aminoácidos , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Composición de Base , Mutación INDEL , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
5.
Int J Syst Evol Microbiol ; 63(Pt 7): 2712-2726, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23475340

RESUMEN

The genus Bacillus is a phylogenetically incoherent taxon with members of the group lacking a common evolutionary history. Comprising aerobic and anaerobic spore-forming bacteria, no characteristics are known that can distinguish species of this genus from other similar endospore-forming genera. With the availability of complete genomic data from over 30 different species from this group, we have constructed detailed phylogenetic trees to determine the relationships among Bacillus and other closely related taxa. Additionally, we have performed comparative genomic analysis for the determination of molecular markers, in the form of conserved signature indels (CSIs), to assist in the understanding of relationships among species of the genus Bacillus in molecular terms. Based on the analysis, we report here the identification of 11 and 6 CSIs that clearly differentiate a 'Bacillus subtilis clade' and a 'Bacillus cereus clade', respectively, from all other species of the genus Bacillus. No molecular markers were identified that supported a larger clade within this genus. The subtilis and the cereus clades were also the largest observed monophyletic groupings among species from the genus Bacillus in the phylogenetic trees based on 16S rRNA gene sequences and those based upon concatenated sequences for 20 conserved proteins. Thus, the relationships observed among these groups of species through CSIs are independently well supported by phylogenetic analysis. The molecular markers identified in this study provide a reliable means for the reorganization of the currently polyphyletic genus Bacillus into a more evolutionarily consistent set of groups. It is recommended that the genus Bacillus sensu stricto should comprise only the monophyletic subtilis clade that is demarcated by the identified CSIs, with B. subtilis as its type species. Members of the adjoining cereus clade (referred to as the Cereus clade of bacilli), although they are distinct from the subtilis clade, will also retain the Bacillus genus name as they contain several clinically important species, and their transfer into a new genus could have serious consequences. However, all other species that are currently part of the genus Bacillus and not part of these two clades should be eventually transferred to other genera. We also propose that all novel species of the genus Bacillus must meet minimal requirements, foremost among which is that the branching of the prospective species with the Bacillus sensu stricto clade or the Cereus clade of bacilli should be strongly supported by 16S rRNA gene sequence trees or trees based upon concatenated protein sequences. Additionally, the presence of one or more of the CSIs that are specific for these clades may be used to confirm molecularly the placement of the species into these clades. The identified CSIs, in addition to their usefulness for taxonomic and diagnostic purposes, also provide novel probes for genetic and biochemical studies of these bacteria.


Asunto(s)
Bacillus cereus/clasificación , Bacillus subtilis/clasificación , Filogenia , Secuencia de Aminoácidos , Bacillus cereus/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Marcadores Genéticos , Mutación INDEL , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética
6.
Antonie Van Leeuwenhoek ; 102(4): 517-40, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22711299

RESUMEN

Species belonging to the phylum Synergistetes are poorly characterized. Though the known species display Gram-negative characteristics and the ability to ferment amino acids, no single characteristic is known which can define this group. For eight Synergistetes species, complete genome sequences or draft genomes have become available. We have used these genomes to construct detailed phylogenetic trees for the Synergistetes species and carried out comprehensive analysis to identify molecular markers consisting of conserved signature indels (CSIs) in protein sequences that are specific for either all Synergistetes or some of their sub-groups. We report here identification of 32 CSIs in widely distributed proteins such as RpoB, RpoC, UvrD, GyrA, PolA, PolC, MraW, NadD, PyrE, RpsA, RpsH, FtsA, RadA, etc., including a large >300 aa insert within the RpoC protein, that are present in various Synergistetes species, but except for isolated bacteria, these CSIs are not found in the protein homologues from any other organisms. These CSIs provide novel molecular markers that distinguish the species of the phylum Synergistetes from all other bacteria. The large numbers of other CSIs discovered in this work provide valuable information that supports and consolidates evolutionary relationships amongst the sequenced Synergistetes species. Of these CSIs, seven are specifically present in Jonquetella, Pyramidobacter and Dethiosulfovibrio species indicating a cladal relationship among them, which is also strongly supported by phylogenetic trees. A further 15 CSIs that are only present in Jonquetella and Pyramidobacter indicate a close association between these two species. Additionally, a previously described phylogenetic relationship between the Aminomonas and Thermanaerovibrio species was also supported by 9 CSIs. The strong relationships indicated by the indel analysis provide incentives for the grouping of species from these clades into higher taxonomic groups such as families or orders. The identified molecular markers, due to their specificity for Synergistetes and presence in highly conserved regions of important proteins suggest novel targets for evolutionary, genetic and biochemical studies on these bacteria as well as for the identification of additional species belonging to this phylum in different environments.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Dermatoglifia del ADN/métodos , Marcadores Genéticos , Genoma Bacteriano , Filogenia , Biología Computacional , ADN Bacteriano/genética , Mutación INDEL
7.
Curr Opin Chem Biol ; 66: 102078, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34446368

RESUMEN

The ClpP protease is found across eukaryotic and prokaryotic organisms. It is well-characterized in bacteria where its function is important in maintaining protein homeostasis. Along with its ATPase partners, it has been shown to play critical roles in the regulation of enzymes involved in important cellular pathways. In eukaryotes, ClpP is found within cellular organelles. Proteomic studies have begun to characterize the role of this protease in the mitochondria through its interactions. Here, we discuss the proteomic techniques used to identify its interactors and present an atlas of mitochondrial ClpP substrates. The ClpP substrate pool is extensive and consists of proteins involved in essential mitochondrial processes such as the Krebs cycle, oxidative phosphorylation, translation, fatty acid metabolism, and amino acid metabolism. Discoveries of these associations have begun to illustrate the functional significance of ClpP in human health and disease.


Asunto(s)
Endopeptidasa Clp , Péptido Hidrolasas , Bacterias/metabolismo , Endopeptidasa Clp/química , Humanos , Mitocondrias/metabolismo , Péptido Hidrolasas/metabolismo , Proteómica
8.
Front Mol Biosci ; 9: 1054408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533084

RESUMEN

Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.

9.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492227

RESUMEN

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Complejos Multiproteicos/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Reguladoras de la Apoptosis/química , Sitios de Unión , Proteínas Portadoras/química , Cromatografía en Gel , ADN Helicasas/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína
10.
Antonie Van Leeuwenhoek ; 100(1): 1-34, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21503713

RESUMEN

Thermotogae species are currently identified mainly on the basis of their unique toga and distinct branching in the rRNA and other phylogenetic trees. No biochemical or molecular markers are known that clearly distinguish the species from this phylum from all other bacteria. The taxonomic/evolutionary relationships within this phylum, which consists of a single family, are also unclear. We report detailed phylogenetic analyses on Thermotogae species based on concatenated sequences for many ribosomal as well as other conserved proteins that identify a number of distinct clades within this phylum. Additionally, comprehensive analyses of protein sequences from Thermotogae genomes have identified >60 Conserved Signature Indels (CSI) that are specific for the Thermotogae phylum or its different subgroups. Eighteen CSIs in important proteins such as PolI, RecA, TrpRS and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in various Thermotogae species and provide molecular markers for the phylum. Many CSIs were specific for a number of Thermotogae subgroups. Twelve of these CSIs were specific for a clade consisting of various Thermotoga species except Tt. lettingae, which was separated from other Thermotoga species by a long branch in phylogenetic trees; Fourteen CSIs were specific for a clade consisting of the Fervidobacterium and Thermosipho genera and eight additional CSIs were specific for the genus Thermosipho. In addition, the existence of a clade consisting of the deep branching species Petrotoga mobilis, Kosmotoga olearia and Thermotogales bacterium mesG1 was supported by seven CSIs. The deep branching of this clade was also supported by a number of CSIs that were present in various Thermotogae species, but absent in this clade and all other bacteria. Most of these clades were strongly supported by phylogenetic analyses based on two datasets of protein sequences and they identify potential higher taxonomic grouping (viz. families) within this phylum. We also report 16 CSIs that are shared by either some or all Thermotogae species and some species from other taxa such as Archaea, Aquificae, Firmicutes, Proteobacteria, Deinococcus, Fusobacteria, Dictyoglomus, Chloroflexi and eukaryotes. The shared presence of some of these CSIs could be due to lateral gene transfers between these groups. However, no clear preference for any particular group was observed in this regard. The molecular probes based on different genes/proteins, which contain these Thermotogae-specific CSIs, provide novel and highly specific means for identification of both known as well as previously unknown Thermotogae species in different environments. Additionally, these CSIs also provide valuable tools for genetic and biochemical studies that could lead to discovery of novel properties that are unique to these bacteria.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Filogenia , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Datos de Secuencia Molecular
12.
Commun Biol ; 2: 410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754640

RESUMEN

Bacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in Neisseria meningitidis and Escherichia coli ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering. ACP1 and ADEP induce distinct conformational changes in the ClpP structure. However, reorganization of electrostatic interaction networks at the ClpP entrance pores is necessary and sufficient for activation. Further activation is achieved by formation of ordered N-terminal axial loops and reduction in the structural heterogeneity of the ClpP cylinder. Activating mutations recapitulate the structural effects of small molecule activator binding. Our data, together with previous findings, provide a structural basis for a unified mechanism of compound-based ClpP activation.


Asunto(s)
Endopeptidasa Clp/química , Modelos Moleculares , Electricidad Estática , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Endopeptidasa Clp/metabolismo , Activación Enzimática , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Tirosina Fosfatasas/química
13.
ACS Chem Biol ; 13(6): 1413-1425, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29775273

RESUMEN

In prokaryotic cells and eukaryotic organelles, the ClpP protease plays an important role in proteostasis. The disruption of the ClpP function has been shown to influence the infectivity and virulence of a number of bacterial pathogens. More recently, ClpP has been found to be involved in various forms of carcinomas and in Perrault syndrome, which is an inherited condition characterized by hearing loss in males and females and by ovarian abnormalities in females. Hence, targeting ClpP is a potentially viable, attractive option for the treatment of different ailments. Herein, the biochemical and cellular activities of ClpP are discussed along with the mechanisms by which ClpP affects bacterial pathogenesis and various human diseases. In addition, a comprehensive overview is given of the new classes of compounds in development that target ClpP. Many of these compounds are currently primarily aimed at treating bacterial infections. Some of these compounds inhibit ClpP activity, while others activate the protease and lead to its dysregulation. The ClpP activators are remarkable examples of small molecules that inhibit protein-protein interactions but also result in a gain of function.


Asunto(s)
Infecciones Bacterianas/fisiopatología , Endopeptidasa Clp/fisiología , Neoplasias/fisiopatología , Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Proteínas Bacterianas/antagonistas & inhibidores , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/química , Inhibidores Enzimáticos/farmacología , Proteínas de Choque Térmico/antagonistas & inhibidores , Humanos , Mitocondrias/fisiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología
14.
J Mol Biol ; 429(2): 324-344, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27979649

RESUMEN

Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein that we termed VWA interacting with AAA+ ATPase (ViaA) containing a von Willebrand Factor A domain. However, the functional role of RavA-ViaA in the cell is not yet well established. Here, we show that RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Expression analysis of ravA and viaA genes showed that both proteins are co-expressed with multiple anaerobic respiratory genes, many of which are regulated by the anaerobic transcriptional regulator Fnr. Consistently, the expression of both ravA and viaA was found to be dependent on Fnr in cells grown under oxygen-limiting condition. ViaA was found to physically interact with FrdA, the flavin-containing subunit of the Frd complex. Both RavA and the Fe-S-containing subunit of the Frd complex, FrdB, regulate this interaction. Importantly, Frd activity was observed to increase in the absence of RavA and ViaA. This indicates that RavA and ViaA modulate the activity of the Frd complex, signifying a potential regulatory chaperone-like function for RavA-ViaA during bacterial anaerobic respiration with fumarate as the terminal electron acceptor.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Succinato Deshidrogenasa/química , Adenosina Trifosfatasas/química , Secuencia de Bases , Transporte de Electrón , Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Chaperonas Moleculares/genética , Succinato Deshidrogenasa/genética
15.
Structure ; 24(7): 1095-109, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27265850

RESUMEN

Amyloids are fibrillar protein superstructures that are commonly associated with diseases in humans and with physiological functions in various organisms. The precise mechanisms of amyloid formation remain to be elucidated. Surprisingly, we discovered that a bacterial Escherichia coli chaperone-like ATPase, regulatory ATPase variant A (RavA), and specifically the LARA domain in RavA, forms amyloids under acidic conditions at elevated temperatures. RavA is involved in modulating the proper assembly of membrane respiratory complexes. LARA contains an N-terminal loop region followed by a ß-sandwich-like folded core. Several approaches, including nuclear magnetic resonance spectroscopy and molecular dynamics simulations, were used to determine the mechanism by which LARA switches to an amyloid state. These studies revealed that the folded core of LARA is amyloidogenic and is protected by its N-terminal loop. At low pH and high temperatures, the interaction of the N-terminal loop with the folded core is disrupted, leading to amyloid formation.


Asunto(s)
Adenosina Trifosfatasas/química , Amiloide/química , Proteínas de Escherichia coli/química , Secuencias de Aminoácidos , Agregado de Proteínas , Dominios Proteicos
16.
Artículo en Inglés | MEDLINE | ID: mdl-22919687

RESUMEN

The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.


Asunto(s)
Archaea/genética , Proteínas Arqueales/genética , Bacterias/genética , Proteínas Bacterianas/genética , Evolución Molecular , Filogenia , Transferencia de Gen Horizontal
17.
Front Microbiol ; 3: 327, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060863

RESUMEN

The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia, and Chlamydiae, along with the Lentisphaerae, Poribacteria, and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, six conserved signature indels (CSIs) in the proteins Cyt c oxidase, UvrD helicase, urease, and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase, and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia, and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae, and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA