Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Kidney Int ; 101(5): 906-911, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34953771

RESUMEN

Pregnancy is proposed to aggravate cyst progression in autosomal dominant polycystic kidney disease (ADPKD) but Tolvaptan, the only FDA-approved drug for adult ADPKD, is not recommended for pregnant ADPKD patients because of potential fetal harm. Since pregnancy itself may increase the risk for ADPKD progression, we investigated the safety and efficacy of Elamipretide, a mitochondrial-protective tetrapeptide. Elamipretide was found to ameliorate the progression of kidney disease in pregnant Pkd1RC/RC mice, in parallel with attenuation of ERK1/2 phosphorylation and improvement of mitochondrial supercomplex formation. Furthermore, Elamipretide was found to pass through the placenta and breast milk and ameliorate aggressive infantile polycystic kidney disease without any observed teratogenic or harmful effect. Elamipretide has an excellent safety profile and is currently tested in multiple phase II and phase III clinical trials. These preclinical studies support a potential clinical trial of Elamipretide for the treatment of ADPKD, particularly for patients that cannot take Tolvaptan.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Animales Recién Nacidos , Femenino , Humanos , Masculino , Ratones , Mutación , Oligopéptidos , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Embarazo , Tolvaptán/uso terapéutico
2.
Am J Physiol Heart Circ Physiol ; 321(5): H850-H864, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477461

RESUMEN

Molecular mechanisms underlying cardiac dysfunction and subsequent heart failure in diabetic cardiomyopathy are incompletely understood. Initially we intended to test the role of G protein-coupled receptor kinase 2 (GRK2), a potential mediator of cardiac dysfunction in diabetic cardiomyopathy, but found that control animals on HFD did not develop cardiomyopathy. Cardiac function was preserved in both wild-type and GRK2 knockout animals fed high-fat diet as indicated by preserved left ventricular ejection fraction (LVEF) although heart mass was increased. The absence of cardiac dysfunction led us to rigorously evaluate the utility of diet-induced obesity to model diabetic cardiomyopathy in mice. Using pure C57BL/6J animals and various diets formulated with different sources of fat-lard (32% saturated fat, 68% unsaturated fat) or hydrogenated coconut oil (95% saturated fat), we consistently observed left ventricular hypertrophy, preserved LVEF, and preserved contractility measured by invasive hemodynamics in animals fed high-fat diet. Gene expression patterns that characterize pathological hypertrophy were not induced, but a modest induction of various collagen isoforms and matrix metalloproteinases was observed in heart with high-fat diet feeding. PPARα-target genes that enhance lipid utilization such as Pdk4, CD36, AcadL, and Cpt1b were induced, but mitochondrial energetics was not impaired. These results suggest that although long-term fat feeding in mice induces cardiac hypertrophy and increases cardiac fatty acid metabolism, it may not be sufficient to activate pathological hypertrophic mechanisms that impair cardiac function or induce cardiac fibrosis. Thus, additional factors that are currently not understood may contribute to the cardiac abnormalities previously reported by many groups.NEW & NOTEWORTHY Dietary fat overload (DFO) is widely used to model diabetic cardiomyopathy but the utility of this model is controversial. We comprehensively characterized cardiac contractile and mitochondrial function in C57BL6/J mice fed with lard-based or saturated fat-enriched diets initiated at two ages. Despite cardiac hypertrophy, contractile and mitochondrial function is preserved, and molecular adaptations likely limit lipotoxicity. The resilience of these hearts to DFO underscores the need to develop robust alternative models of diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/etiología , Dieta Alta en Grasa , Hipertrofia Ventricular Izquierda/etiología , Obesidad/complicaciones , Volumen Sistólico , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Factores de Edad , Animales , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Fibrosis , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Miocardio/enzimología , Miocardio/patología , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular
3.
Basic Res Cardiol ; 111(5): 53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27412778

RESUMEN

Immunoadsorption with subsequent immunoglobulin substitution (IA/IgG) represents a therapeutic approach for patients with dilated cardiomyopathy (DCM). Here, we studied which molecular cardiac alterations are initiated after this treatment. Transcription profiling of endomyocardial biopsies with Affymetrix whole genome arrays was performed on 33 paired samples of DCM patients collected before and 6 months after IA/IgG. Therapy-related effects on myocardial protein levels were analysed by label-free proteome profiling for a subset of 23 DCM patients. Data were analysed regarding therapy-associated differences in gene expression and protein levels by comparing responders (defined by improvement of left ventricular ejection fraction ≥20 % relative and ≥5 % absolute) and non-responders. Responders to IA/IgG showed a decrease in serum N-terminal proBNP levels in comparison with baseline which was accompanied by a decreased expression of heart failure markers, such as angiotensin converting enzyme 2 or periostin. However, despite clinical improvement even in responders, IA/IgG did not trigger general inversion of DCM-associated molecular alterations in myocardial tissue. Transcriptome profiling revealed reduced gene expression for connective tissue growth factor, fibronectin, and collagen type I in responders. In contrast, in non-responders after IA/IgG, fibrosis-associated genes and proteins showed elevated levels, whereas values were reduced or maintained in responders. Thus, improvement of LV function after IA/IgG seems to be related to a reduced gene expression of heart failure markers and pro-fibrotic molecules as well as reduced fibrosis progression.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/terapia , Inmunoglobulina G/uso terapéutico , Adulto , Femenino , Humanos , Técnicas de Inmunoadsorción , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proyectos Piloto , Proteómica , Transcriptoma
4.
Cells ; 12(18)2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37759450

RESUMEN

Functional analysis of somatic mutations in tumorigenesis facilitates the development and optimization of personalized therapy for cancer patients. The fibroblast growth factor receptor 2 (FGFR2) gene is frequently mutated in endometrial cancer (EC), but the functional implications of FGFR2 mutations in cancer development remain largely unexplored. In this study, we introduced a reliable and readily deployable screening method to investigate the effects of FGFR2 mutations. We demonstrated that distinct mutations in FGFR2 can lead to differential downstream consequences, specifically affecting a disintegrin- and metalloprotease 17 (ADAM17)-dependent shedding of the epidermal growth factor receptor (EGFR) ligand heparin-binding EGF-like growth factor (HB-EGF) and phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, we showed that the distribution of mutations within the FGFR2 gene can influence their oncogenic effects. Together, these findings provide important insights into the complex nature of FGFR2 mutations and their potential implications for EC. By unraveling the distinct effects of different mutations, our study contributes to the identification of personalized treatment strategies for patients with FGFR2-mutated cancers. This knowledge has the potential to guide the development of targeted therapies that specifically address the underlying molecular alterations associated with FGFR2 mutations, ultimately improving patient outcomes in EC and potentially other cancer types characterized by FGFR2 mutations.


Asunto(s)
Neoplasias Endometriales , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Femenino , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Fosforilación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Mutación/genética
5.
J Cachexia Sarcopenia Muscle ; 14(1): 243-259, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36442857

RESUMEN

BACKGROUND: Muscle mitochondrial decline is associated with aging-related muscle weakness and insulin resistance. FoxO transcription factors are targets of insulin action and deletion of FoxOs improves mitochondrial function in diabetes. However, disruptions in proteostasis and autophagy are hallmarks of aging and the effect of chronic inhibition of FoxOs in aged muscle is unknown. This study investigated the role of FoxOs in regulating muscle strength and mitochondrial function with age. METHODS: We measured muscle strength, cross-sectional area, muscle fibre-type, markers of protein synthesis/degradation, central nuclei, glucose/insulin tolerance, and mitochondrial bioenergetics in 4.5-month (Young) and 22-24-month-old (Aged) muscle-specific FoxO1/3/4 triple KO (TKO) and littermate control (Ctrl) mice. RESULTS: Lean mass was increased in Aged TKO compared with both Aged Ctrl and younger groups by 26-33% (P < 0.01). Muscle strength, measured by max force of tibialis anterior (TA) contraction, was 20% lower in Aged Ctrl compared with Young Ctrls (P < 0.01) but was not decreased in Aged TKOs. Increased muscle strength in Young and Aged TKO was associated with 18-48% increased muscle weights compared with Ctrls (P < 0.01). Muscle cross-sectional analysis of TA, soleus, and plantaris revealed increases in fibre size distribution and a 2.5-10-fold increase in central nuclei in Young and Aged TKO mice, without histologic signs of muscle damage. Age-dependent increases in Gadd45a and Ube4a expression as well accumulation of K48 polyubiquitinated proteins were observed in quad and TA but were prevented by FoxO deletion. Young and Aged TKO muscle showed minimal changes in autophagy flux and no accumulation of autophagosomes compared with Ctrl groups. Increased strength in Young and Aged TKO was associated with a 10-20% increase in muscle mitochondrial respiration using glutamate/malate/succinate compared with controls (P < 0.05). OXPHOS subunit expression and complex I activity were decreased 16-34% in Aged Ctrl compared with Young Ctrl but were prevented in Aged TKO. Both Aged Ctrl and Aged TKO showed impaired glucose tolerance by 33% compared to young groups (P < 0.05) indicating improved strength and mitochondrial respiration are not due to improved glycemia. CONCLUSIONS: FoxO deletion increases muscle strength even during aging. Deletion of FoxOs maintains muscle strength in part by mild suppression of atrophic pathways, including inhibition of Gadd45a and Ube4a expression, without accumulation of autophagosomes in muscle. Deletion of FoxOs also improved mitochondrial function by maintenance of OXPHOS in both young and aged TKO.


Asunto(s)
Envejecimiento , Factores de Transcripción Forkhead , Mitocondrias , Fuerza Muscular , Músculo Esquelético , Animales , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Front Physiol ; 12: 779121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185597

RESUMEN

Insulin and IGF-1, acting through the insulin receptor (IR) and IGF-1 receptor (IGF1R), maintain muscle mass and mitochondrial function, at least part of which occurs via their action to regulate gene expression. Here, we show that while muscle-specific deletion of IR or IGF1R individually results in only modest changes in the muscle transcriptome, combined deletion of IR/IGF1R (MIGIRKO) altered > 3000 genes, including genes involved in mitochondrial dysfunction, fibrosis, cardiac hypertrophy, and pathways related to estrogen receptor, protein kinase A (PKA), and calcium signaling. Functionally, this was associated with decreased mitochondrial respiration and increased ROS production in MIGIRKO muscle. To determine the role of FoxOs in these changes, we performed RNA-Seq on mice with muscle-specific deletion of FoxO1/3/4 (M-FoxO TKO) or combined deletion of IR, IGF1R, and FoxO1/3/4 in a muscle quintuple knockout (M-QKO). This revealed that among IR/IGF1R regulated genes, >97% were FoxO-dependent, and their expression was normalized in M-FoxO TKO and M-QKO muscle. FoxO-dependent genes were related to oxidative phosphorylation, inflammatory signaling, and TCA cycle. Metabolomic analysis showed accumulation of TCA cycle metabolites in MIGIRKO, which was reversed in M-QKO muscle. Likewise, calcium signaling genes involved in PKA signaling and sarcoplasmic reticulum calcium homeostasis were markedly altered in MIGIRKO muscle but normalized in M-QKO. Thus, combined loss of insulin and IGF-1 action in muscle transcriptionally alters mitochondrial function and multiple regulatory and signaling pathways, and these changes are mediated by FoxO transcription factors.

8.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343133

RESUMEN

Decreased skeletal muscle strength and mitochondrial dysfunction are characteristic of diabetes. The actions of insulin and IGF-1 through the insulin receptor (IR) and IGF-1 receptor (IGF1R) maintain muscle mass via suppression of forkhead box O (FoxO) transcription factors, but whether FoxO activation coordinates atrophy in concert with mitochondrial dysfunction is unknown. We show that mitochondrial respiration and complex I activity were decreased in streptozotocin (STZ) diabetic muscle, but these defects were reversed in muscle-specific FoxO1, -3, and -4 triple-KO (M-FoxO TKO) mice rendered diabetic with STZ. In the absence of systemic glucose or lipid abnormalities, muscle-specific IR KO (M-IR-/-) or combined IR/IGF1R KO (MIGIRKO) impaired mitochondrial respiration, decreased ATP production, and increased ROS. These mitochondrial abnormalities were not present in muscle-specific IR, IGF1R, and FoxO1, -3, and -4 quintuple-KO mice (M-QKO). Acute tamoxifen-inducible deletion of IR and IGF1R also decreased muscle pyruvate respiration, complex I activity, and supercomplex assembly. Although autophagy was increased when IR and IGF1R were deleted in muscle, mitophagy was not increased. Mechanistically, RNA-Seq revealed that complex I core subunits were decreased in STZ-diabetic and MIGIRKO muscle, and these changes were not present with FoxO KO in STZ-FoxO TKO and M-QKO mice. Thus, insulin-deficient diabetes or loss of insulin/IGF-1 action in muscle decreases complex I-driven mitochondrial respiration and supercomplex assembly in part by FoxO-mediated repression of complex I subunit expression.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Metabolismo Energético , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Masculino , Ratones , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Modelos Biológicos , Receptor IGF Tipo 1/deficiencia , Receptor IGF Tipo 1/genética , Receptor de Insulina/deficiencia , Receptor de Insulina/genética
9.
JCI Insight ; 6(9)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33784258

RESUMEN

Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in ß cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects ß cell function under nutritional stress, PLIN2 was downregulated in mouse ß cells, INS1 cells, and human islet cells. ß Cell-specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in ß cells has an important role in preserving insulin secretion, ß cell metabolism, and mitochondrial function under nutritional stress.


Asunto(s)
Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Gotas Lipídicas/metabolismo , Perilipina-2/genética , Estrés Fisiológico/genética , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Dieta Alta en Grasa , Regulación hacia Abajo , Glucosa/metabolismo , Humanos , Técnicas In Vitro , Islotes Pancreáticos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Ácido Oléico/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo/genética , Consumo de Oxígeno/genética , Perilipina-2/metabolismo , Ratas
10.
Metabolism ; 106: 154194, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32135161

RESUMEN

BACKGROUND: Low-grade inflammation and metabolic dysregulation are common comorbidities of obesity, both of which are associated with alterations in iRhom2-regulated pro-inflammatory cytokine and epidermal growth factor receptor (EGFR) ligand signaling. OBJECTIVE: Our objective was to determine the role of iRhom2 in the regulation of low-grade inflammation and metabolic dysregulation in a murine model of diet-induced obesity. METHODS: Wild type (WT) and iRhom2-deficient mice were fed normal chow (NC) or a high-fat diet (HFD) starting at 5 weeks of age for up to 33 weeks. Body composition, glucose and insulin tolerance, feeding behavior, and indirect calorimetry were measured at defined time points. Adipose tissue cytokine expression and inflammatory lesions known as crown-like structures (CLS) were analyzed at the end-point of the study. RESULTS: iRhom2-deficient mice show accelerated fat gain on a HFD, accompanied by insulin resistance. Indirect calorimetry did not demonstrate changes in energy expenditure or food intake, but locomotor activity was significantly reduced in HFD iRhom2-deficient mice. Interestingly, CLS, macrophage infiltration, and tumor necrosis factor (TNF) production were decreased in adipose tissue from HFD iRhom2-deficient mice, but circulating cytokines were unchanged. In inguinal and perigonadal fat, the EGFR ligand amphiregulin was markedly induced in HFD controls but completely prevented in iRhom2-deficient mice, suggesting a potentially dominant role of EGFR-dependent mechanisms over TNF in the modulation of insulin sensitivity. CONCLUSIONS: This study elucidates a novel role for iRhom2 as an immuno-metabolic regulator that affects adipose tissue inflammation independent of insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Portadoras/fisiología , Dieta Alta en Grasa , Inflamación/patología , Resistencia a la Insulina/genética , Obesidad/etiología , Aumento de Peso/genética , Tejido Adiposo/patología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Paniculitis/genética , Paniculitis/metabolismo , Paniculitis/patología
11.
Mol Metab ; 30: 203-220, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31767172

RESUMEN

OBJECTIVE: Gender influences obesity-related complications, including diabetes. Females are more protected from insulin resistance after diet-induced obesity, which may be related to fat accumulation and muscle insulin sensitivity. FoxOs regulate muscle atrophy and are targets of insulin action, but their role in muscle insulin sensitivity and mitochondrial metabolism is unknown. METHODS: We measured muscle insulin signaling, mitochondrial energetics, and metabolic responses to a high-fat diet (HFD) in male and female muscle-specific FoxO1/3/4 triple knock-out (TKO) mice. RESULTS: In male TKO muscle, insulin-stimulated AKT activation was decreased. AKT2 protein and mRNA levels were reduced and insulin receptor protein and IRS-2 mRNA decreased. These changes contributed to decreased insulin-stimulated glucose uptake in glycolytic muscle in males. In contrast, female TKOs maintain normal insulin-mediated AKT phosphorylation, normal AKT2 levels, and normal glucose uptake in glycolytic muscle. When challenged with a HFD, fat gain was attenuated in both male and female TKO mice, and associated with decreased glucose levels, improved glucose homeostasis, and reduced muscle triglyceride accumulation. Furthermore, female TKO mice showed increased energy expenditure, relative to controls, due to increased lean mass and maintenance of mitochondrial function in muscle. CONCLUSIONS: FoxO deletion in muscle uncovers sexually dimorphic regulation of AKT2, which impairs insulin signaling in male mice, but not females. However, loss of FoxOs in muscle from both males and females also leads to muscle hypertrophy and increases in metabolic rate. These factors mitigate fat gain and attenuate metabolic abnormalities in response to a HFD.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/genética , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo , Caracteres Sexuales , Factores Sexuales , Transducción de Señal , Aumento de Peso
12.
J Proteomics ; 209: 103508, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31476444

RESUMEN

To identify potential biomarkers supporting better phenotyping and to improve understanding of the pathophysiology of dilated cardiomyopathy (DCM), this study comparatively analyzed plasma protein profiles of DCM patients and individuals with low normal and normal left ventricular ejection fraction (LVEF) by mass spectrometry. After plasma depletion using a MARS Hu-6 column, global proteome profiling was performed using a LTQ-Orbitrap Velos mass spectrometer. To compare and confirm results, two different discovery sets of samples were investigated. Differentially abundant proteins are involved in lipid metabolism, coagulation, and acute phase response. Serum paraoxonase 1 (PON1), cystatin C, lysozyme C, apolipoprotein A-II, and apolipoprotein M were validated by targeted protein analysis in a third independent patient cohort. Additionally, PON1 levels were also determined by an ELISA. These data highlight PON1 as a potential marker for differentiating DCM patients not only from patients with normal LVEF, but also from heart failure patients with preserved ejection fraction. The results highlight lipid metabolism and inflammation as the major pathways being altered in DCM patients in comparison to patients presenting with suspicious myocarditis to the hospital. SIGNIFICANCE: Several studies focused on the identification of heart failure (HF) associated protein signatures in blood plasma, but only few that are largely based on only small sample series considered specific HF pathologies. Therefore, we performed a comparative global blood plasma protein profiling of a larger sample of individuals with reduced left ventricular ejection fraction (LVEF) classified as dilated cardiomyopathy patients and individuals with normal LVEF but presenting with suspicious myocarditis. DCM patients displayed altered levels of proteins involved in lipid metabolism, coagulation, and acute phase response. The most reliable candidates, such as serum paraoxonase 1 (PON1), cystatin C, lysozyme C, apolipoprotein A-II, and apolipoprotein M were validated by targeted protein analysis in an independent patient cohort. PON1 levels were also determined by an ELISA. These data highlight PON1 as a potential marker for differentiating DCM patients not only from patients with normal LVEF, but also from heart failure patients with preserved ejection fraction.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Perfilación de la Expresión Génica , Plasma/química , Proteínas de Fase Aguda , Arildialquilfosfatasa/análisis , Arildialquilfosfatasa/sangre , Biomarcadores/sangre , Coagulación Sanguínea , Cardiomiopatía Dilatada/sangre , Femenino , Humanos , Inflamación , Metabolismo de los Lípidos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Proteómica/métodos , Volumen Sistólico
13.
Diabetes ; 68(3): 556-570, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30523026

RESUMEN

Insulin deficiency and uncontrolled diabetes lead to a catabolic state with decreased muscle strength, contributing to disease-related morbidity. FoxO transcription factors are suppressed by insulin and thus are key mediators of insulin action. To study their role in diabetic muscle wasting, we created mice with muscle-specific triple knockout of FoxO1/3/4 and induced diabetes in these M-FoxO-TKO mice with streptozotocin (STZ). Muscle mass and myofiber area were decreased 20-30% in STZ-Diabetes mice due to increased ubiquitin-proteasome degradation and autophagy alterations, characterized by increased LC3-containing vesicles, and elevated levels of phosphorylated ULK1 and LC3-II. Both the muscle loss and markers of increased degradation/autophagy were completely prevented in STZ FoxO-TKO mice. Transcriptomic analyses revealed FoxO-dependent increases in ubiquitin-mediated proteolysis pathways in STZ-Diabetes, including regulation of Fbxo32 (Atrogin1), Trim63 (MuRF1), Bnip3L, and Gabarapl. These same genes were increased 1.4- to 3.3-fold in muscle from humans with type 1 diabetes after short-term insulin deprivation. Thus, FoxO-regulated genes play a rate-limiting role in increased protein degradation and muscle atrophy in insulin-deficient diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/metabolismo , Atrofia Muscular/metabolismo , Aminoácidos/sangre , Animales , Autofagia/fisiología , Proteínas de Ciclo Celular , ADN Complementario/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Factores de Transcripción Forkhead/genética , Humanos , Insulina/sangre , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/sangre , Atrofia Muscular/genética , Fosforilación , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Proteomics ; 150: 121-129, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27616206

RESUMEN

Dilated cardiomyopathy (DCM) is a disease of the myocardium with reduced left ventricular ejection fraction (LVEF). Cardiac autoantibodies (AAbs) play a causal role in the development and progression of DCM. Removal of AAbs using immunoadsorption (IA/IgG) has been shown as a therapeutic option to improve cardiac function. However, the response to therapy differs significantly among patients. The reasons for this variability are not completely understood. Hitherto, no potential biomarker is available to predict improvement of cardiac function after therapy accurately. This shotgun proteome study aims to disclose the differences in the endomyocardial proteome between patients with improved LVEF after IA/IgG (responders) and those without improvement (non-responders) before therapy start. Comparative analysis revealed 54 differentially abundant proteins that were mostly confined to carbohydrate and lipid metabolism, energy and immune regulation, and cardioprotection. Selected proteins representing various functional categories were further confirmed by multiple reaction monitoring (MRM). Among those, protein S100-A8, perilipin-4, and kininogen-1 were found the most robust candidates differentiating responders and non-responders. Receiver operating characteristic curve (ROC) analysis of these proteins revealed highest potential for protein S100-A8 (AUC 0.92) with high sensitivity and specificity to be developed as a classifier for the prediction of cardiac improvement after IA/IgG therapy. SIGNIFICANCE: We evaluated the differences in the myocardial proteome of responder and non-responder DCM patients before immunoadsorption therapy and identified a number of differentially abundant proteins involved in energy and lipid metabolism, immune system, and cardioprotection. MRM was used for verification of results. Proteins S100-A8, perilipin-4, and kininogen-1 were found to display the largest differences. The results provide a lead for further studies to screen for protein biomarker candidates in plasma that might be helpful to stratify patients for immunoadsorption therapy treatment.


Asunto(s)
Autoanticuerpos/aislamiento & purificación , Cardiomiopatía Dilatada/terapia , Técnicas de Inmunoadsorción , Miocardio/metabolismo , Proteoma/análisis , Proteómica/métodos , Adulto , Biomarcadores/metabolismo , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocardio/inmunología , Proyectos Piloto , Pronóstico , Proteoma/metabolismo , Estudios Retrospectivos , Resultado del Tratamiento
15.
Sci Rep ; 6: 28042, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350024

RESUMEN

Coronary artery disease (CAD) is one of the largest causes of death worldwide yet the traditional risk factors, although useful in identifying people at high risk, lack the desired predictive accuracy. Techniques like quantitative plasma proteomics holds immense potential to identify newer markers and this study (conducted in three phases) was aimed to identify differentially expressed proteins in stable CAD patients. In the first (discovery) phase, plasma from CAD cases (angiographically proven) and controls were subjected to iTRAQ based proteomic analysis. Proteins found to be differentially expressed were then validated in the second and third (verification and validation) phases in larger number of (n = 546) samples. After multivariate logistic regression adjusting for confounding factors (age, diet, etc.), four proteins involved in the reverse cholesterol pathway (Apo A1, ApoA4, Apo C1 and albumin) along with diabetes and hypertension were found to be significantly associated with CAD and could account for approximately 88% of the cases as revealed by ROC analysis. The maximum odds ratio was found to be 6.70 for albumin (p < 0.0001), followed by Apo AI (5.07, p < 0.0001), Apo CI (4.03, p = 0.001), and Apo AIV (2.63, p = 0.003). Down-regulation of apolipoproteins and albumin implicates the impairment of reverse cholesterol pathway in CAD.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Colesterol/sangre , Enfermedad de la Arteria Coronaria/sangre , Proteómica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Clin Chim Acta ; 451(Pt B): 199-207, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26434552

RESUMEN

BACKGROUND: Global analysis of stimulus-dependent changes in the neutrophil phosphoproteome will improve the understanding of neutrophil signal transduction and function in diverse disease settings. However, gel-free phosphoproteomics of neutrophils in clinical studies is hampered by limited sample amounts and requires protein extract stability, efficient tryptic digestion and sensitive phosphopeptide enrichment in a protease-rich environment. For development of an appropriate workflow, we assessed neutrophil protein stability in urea-based lysis buffers and determined feasibility of gel-free phosphoproteomic analyses using polymer-based metal ion affinity capture (PolyMAC). METHODS: Western blotting, phosphopeptide enrichment and mass spectrometric analyses of samples of neutrophils were performed. RESULTS: Degradation of proteins in neutrophil extracts was observed after preparation with a urea-containing lysis buffer and could be prevented by addition of highly concentrated protease inhibitors. Subsequent tryptic digestion and PolyMAC-based phosphopeptide enrichment proved efficient with accordingly prepared neutrophil samples. Applying the new workflow, formyl­methionyl­leucyl­phenylalanine-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was detected after gel-free and gel-based phosphoproteomic analyses as proof of principle from 20 ml of whole blood. Furthermore, phosphorylation of other ERK1/2 pathway-associated proteins was monitored. CONCLUSION: We provide a workflow for efficient, gel-free phosphoproteome analyses with small-sized neutrophil samples, suitable for application in clinical studies.


Asunto(s)
Neutrófilos/química , Fosfopéptidos/sangre , Proteómica , Células HEK293 , Humanos , Espectrometría de Masas , Peso Molecular
17.
J Proteomics ; 127(Pt A): 178-84, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25982389

RESUMEN

Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India.


Asunto(s)
Riñón/metabolismo , Exposición Materna/efectos adversos , Micronutrientes/deficiencia , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteoma/metabolismo , Animales , Femenino , Riñón/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Wistar
18.
PLoS One ; 8(2): e56655, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437200

RESUMEN

Rotavirus (RV) being the major diarrhoegenic virus causes around 527000 children death (<5 years age) worldwide. In cellular environment, viruses constantly adapt and modulate to survive and replicate while the host cell also responds to combat the situation and this results in the differential regulation of cellular proteins. To identify the virus induced differential expression of proteins, 2D-DIGE (Two-dimensional Difference Gel Electrophoresis) based proteomics was used. For this, HT-29 cells were infected with RV strain SA11 for 0 hours, 3 hours and 9 hours post infection (hpi), differentially expressed spots were excised from the gel and identified using MALDI-TOF/TOF mass spectrometry. 2D-DIGE based proteomics study identified 32 differentially modulated proteins, of which 22 were unique. Some of these were validated in HT-29 cell line and in BALB/c mice model. One of the modulated cellular proteins, calmodulin (CaM) was found to directly interact with RV protein VP6 in the presence of Ca(2+). Ca(2+)-CaM/VP6 interaction positively regulates RV propagation since both CaM inhibitor (W-7) and Ca(2+) chelator (BAPTA-AM) resulted in decreased viral titers. This study not only identifies differentially modulated cellular proteins upon infection with rotavirus in 2D-DIGE but also confirmed positive engagement of cellular Ca(2+)/CaM during viral pathogenesis.


Asunto(s)
Antígenos Virales/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de la Cápside/metabolismo , Disentería/metabolismo , Infecciones por Rotavirus/metabolismo , Rotavirus/metabolismo , Animales , Antígenos Virales/genética , Calcio/química , Calmodulina/antagonistas & inhibidores , Calmodulina/genética , Proteínas de la Cápside/genética , Disentería/genética , Disentería/virología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Rotavirus/genética , Rotavirus/patogenicidad , Infecciones por Rotavirus/genética , Infecciones por Rotavirus/patología , Electroforesis Bidimensional Diferencial en Gel , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
19.
J Proteomics ; 91: 297-308, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23928364

RESUMEN

Maternal nutritional deficiency in-utero is known to predict risk of complex disorders like cardiovascular disease, diabetes and many neurological disorders in the offspring and vitamin B12 is one such critical micronutrient. Here we performed 2D-DIGE followed by MALDI TOF/TOF analysis to identify proteins that are differentially expressed in liver of pups born to mothers fed vitamin B12 deficient diet vis-à-vis control diet. To further establish causality, we analyzed the effect of B12 rehabilitation at parturition on the protein levels and the phenotype in pups. We identified 38 differentially expressed proteins that were enriched in pathways involved in the regulation of amino acid, lipid and carbohydrate metabolism. Further, three enzymes in the ß-oxidation pathway (hydroxyacyl-coenzyme A dehydrogenase, medium-chain specific acyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase) were down-regulated in pups born to mothers fed vitamin B12 deficient diet. We observed age-dependent differential expression of peroxisome proliferator activated-receptor (PPAR) α and γ in the deficient pups. Interestingly, expression of 27 proteins that were differentially expressed was restored to the control levels after rehabilitation of female rats with vitamin B12 from parturition. Our study thus provides the first evidence that maternal vitamin B12 deficiency influences lipid and other micronutrient metabolism in pups through regulation of PPAR signaling pathway. BIOLOGICAL SIGNIFICANCE: Maternal vitamin B12 deficiency has been shown to predict the onset of complex disorders like atherosclerosis, type II diabetes etc. in the next generation during their adulthood. We have shown earlier that pups born to female rats fed with vitamin B12 deficient diet were obese and developed high levels of other intermediate traits such as triglycerides, cholesterol etc. that are related to the risk of diabetes and cardiovascular disorders. In this piece of work using differential proteomic approach we have identified the altered metabolic processes in the liver of vitamin B12 deficient pups. We have also documented that the proteins involved in ß-oxidation pathway are down-regulated. Further, differential expression of PPARα and PPARγ was evidently documented as the master regulator for the alteration of lipid, amino acid and carbohydrate metabolism during maternal vitamin B12 deficiency.


Asunto(s)
Hígado/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Proteoma/metabolismo , Transducción de Señal , Vitamina B 12/metabolismo , Aminoácidos/química , Animales , Animales Recién Nacidos , Carbohidratos/química , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Lípidos/química , Exposición Materna , Micronutrientes , Embarazo , Proteómica , Ratas , Deficiencia de Vitamina B 12/metabolismo
20.
J Proteomics ; 75(3): 1004-17, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22079245

RESUMEN

Cyclosporine A, a potent immunosuppressive agent extensively used to prevent allograft rejections, is under scrutiny due to severe toxic effects. CsA therapy is often continued during pregnancy in conditions such as organ transplantations and autoimmune diseases. Herein, we investigated the effects of CsA on early morphogenesis of zebrafish and identified a spectrum of proteins whose expression was altered in the drug treated embryos. Time-lapse fluorescence imaging of germ-line double transgenic zebrafish embryos treated with CsA revealed severe blood regurgitation in heart chambers, absence of blood circulation in vessels, pericardial and yolk sac edema. We also observed lack of mature blood vessels and down-regulation of endothelial markers in CsA treated embryos. Proteomic analysis using 2D-DIGE followed by mass-spectrometry led to the identification of 37 proteins whose expression was significantly modulated in presence of the drug. These proteins were mostly associated with cytoskeletal/structural assembly, lipid-binding, stress response and metabolism. Furthermore, mRNA expression analysis of eight proteins and Western blotting of actin revealed consistency between the changes observed in protein expression and its corresponding mRNA levels. Our findings demonstrate that CsA administration during early morphogenesis in zebrafish modulates the expression of some proteins which are known to be involved in important physiological processes.


Asunto(s)
Ciclosporina/efectos adversos , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inmunosupresores/efectos adversos , Morfogénesis/efectos de los fármacos , Proteoma/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Anomalías Múltiples/inducido químicamente , Anomalías Múltiples/embriología , Anomalías Múltiples/metabolismo , Animales , Ciclosporina/farmacología , Embrión no Mamífero/metabolismo , Femenino , Humanos , Inmunosupresores/farmacología , Embarazo , Proteómica/métodos , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA