Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 618(7964): 394-401, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225996

RESUMEN

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Ubiquitinación , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo
2.
Nature ; 618(7964): 402-410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225994

RESUMEN

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Proteínas Ubiquitinadas , Ubiquitinación , Animales , Humanos , Ratones , Autofagia/genética , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Ubiquitinadas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Membranas Intracelulares/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941689

RESUMEN

Drug delivery mitigates toxic side effects and poor pharmacokinetics of life-saving therapeutics and enhances treatment efficacy. However, direct cytoplasmic delivery of drugs and vaccines into cells has remained out of reach. We find that liposomes studded with 0.8-nm-wide carbon nanotube porins (CNTPs) function as efficient vehicles for direct cytoplasmic drug delivery by facilitating fusion of lipid membranes and complete mixing of the membrane material and vesicle interior content. Fusion kinetics data and coarse-grained molecular dynamics simulations reveal an unusual mechanism where CNTP dimers tether the vesicles, pull the membranes into proximity, and then fuse their outer and inner leaflets. Liposomes containing CNTPs in their membranes and loaded with an anticancer drug, doxorubicin, were effective in delivering the drug to cancer cells, killing up to 90% of them. Our results open an avenue for designing efficient drug delivery carriers compatible with a wide range of therapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Fusión de Membrana , Nanotubos de Carbono/química , Porinas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Membrana Dobles de Lípidos , Liposomas/química , Liposomas/farmacología , Ratones , Simulación de Dinámica Molecular , Polímeros , Porinas/química , Ratas
4.
J Cell Biochem ; 2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37087736

RESUMEN

Selective autophagy receptors (SARs) are central to cellular homeostatic and organellar recycling pathways. Over the last two decades, more than 30 SARs have been discovered and validated using a variety of experimental approaches ranging from cell biology to biochemistry, including high-throughput imaging and screening methods. Yet, the extent of selective autophagy pathways operating under various cellular contexts, for example, under basal and starvation conditions, remains unresolved. Currently, our knowledge of all known SARs and their associated cargo components is fragmentary and limited by experimental data with varying degrees of resolution. Here, we use classical predictive and modeling approaches to integrate high-quality autophagosome content profiling data with disparate datasets. We identify a global set of potential SARs and their associated cargo components active under basal autophagy, starvation-induced, and proteasome-inhibition conditions. We provide a detailed account of cellular components, biochemical pathways, and molecular processes that are degraded via autophagy. Our analysis yields a catalog of new potential SARs that satisfy the characteristics of bonafide, well-characterized SARs. We categorize them by the subcellular compartments they emerge from and classify them based on their likely mode of action. Our structural modeling validates a large subset of predicted interactions with the human ATG8 family of proteins and shows characteristic, conserved LC3-interacting region (LIR)-LIR docking site (LDS) and ubiquitin-interacting motif (UIM)-UIM docking site (UDS) binding modes. Our analysis also revealed the most abundant cargo molecules targeted by these new SARs. Our findings expand the repertoire of SARs and provide unprecedented details into the global autophagic state of HeLa cells. Taken together, our findings provide motivation for the design of new experiments, testing the role of these novel factors in selective autophagy.

5.
EMBO Rep ; 22(9): e52289, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34338405

RESUMEN

Degradation of the endoplasmic reticulum (ER) via selective autophagy (ER-phagy) is vital for cellular homeostasis. We identify FAM134A/RETREG2 and FAM134C/RETREG3 as ER-phagy receptors, which predominantly exist in an inactive state under basal conditions. Upon autophagy induction and ER stress signal, they can induce significant ER fragmentation and subsequent lysosomal degradation. FAM134A, FAM134B/RETREG1, and FAM134C are essential for maintaining ER morphology in a LC3-interacting region (LIR)-dependent manner. Overexpression of any FAM134 paralogue has the capacity to significantly augment the general ER-phagy flux upon starvation or ER-stress. Global proteomic analysis of FAM134 overexpressing and knockout cell lines reveals several protein clusters that are distinctly regulated by each of the FAM134 paralogues as well as a cluster of commonly regulated ER-resident proteins. Utilizing pro-Collagen I, as a shared ER-phagy substrate, we observe that FAM134A acts in a LIR-independent manner and compensates for the loss of FAM134B and FAM134C, respectively. FAM134C instead is unable to compensate for the loss of its paralogues. Taken together, our data show that FAM134 paralogues contribute to common and unique ER-phagy pathways.


Asunto(s)
Proteínas de la Membrana , Proteómica , Autofagia/genética , Colágeno , Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Control de Calidad
6.
EMBO Rep ; 21(1): e48317, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31709703

RESUMEN

Autophagy is a highly conserved catabolic process through which defective or otherwise harmful cellular components are targeted for degradation via the lysosomal route. Regulatory pathways, involving post-translational modifications such as phosphorylation, play a critical role in controlling this tightly orchestrated process. Here, we demonstrate that TBK1 regulates autophagy by phosphorylating autophagy modifiers LC3C and GABARAP-L2 on surface-exposed serine residues (LC3C S93 and S96; GABARAP-L2 S87 and S88). This phosphorylation event impedes their binding to the processing enzyme ATG4 by destabilizing the complex. Phosphorylated LC3C/GABARAP-L2 cannot be removed from liposomes by ATG4 and are thus protected from ATG4-mediated premature removal from nascent autophagosomes. This ensures a steady coat of lipidated LC3C/GABARAP-L2 throughout the early steps in autophagosome formation and aids in maintaining a unidirectional flow of the autophagosome to the lysosome. Taken together, we present a new regulatory mechanism of autophagy, which influences the conjugation and de-conjugation of LC3C and GABARAP-L2 to autophagosomes by TBK1-mediated phosphorylation.


Asunto(s)
Autofagosomas , Proteínas Asociadas a Microtúbulos , Autofagosomas/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Péptido Hidrolasas , Fosforilación
7.
Proc Natl Acad Sci U S A ; 116(27): 13352-13357, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209022

RESUMEN

Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae, perforates cholesterol-rich lipid membranes. PLY protomers oligomerize as rings on the membrane and then undergo a structural transition that triggers the formation of membrane pores. Structures of PLY rings in prepore and pore conformations define the beginning and end of this transition, but the detailed mechanism of pore formation remains unclear. With atomistic and coarse-grained molecular dynamics simulations, we resolve key steps during PLY pore formation. Our simulations confirm critical PLY membrane-binding sites identified previously by mutagenesis. The transmembrane ß-hairpins of the PLY pore conformation are stable only for oligomers, forming a curtain-like membrane-spanning ß-sheet. Its hydrophilic inner face draws water into the protein-lipid interface, forcing lipids to recede. For PLY rings, this zone of lipid clearance expands into a cylindrical membrane pore. The lipid plug caught inside the PLY ring can escape by lipid efflux via the lower leaflet. If this path is too slow or blocked, the pore opens by membrane buckling, driven by the line tension acting on the detached rim of the lipid plug. Interestingly, PLY rings are just wide enough for the plug to buckle spontaneously in mammalian membranes. In a survey of electron cryo-microscopy (cryo-EM) and atomic force microscopy images, we identify key intermediates along both the efflux and buckling pathways to pore formation, as seen in the simulations.


Asunto(s)
Membrana Celular/efectos de los fármacos , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Membrana Celular/metabolismo , Colesterol/metabolismo , Microscopía por Crioelectrón , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Estreptolisinas/farmacología
9.
RNA Biol ; 13(10): 1025-1040, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27618338

RESUMEN

Pre-mRNA splicing in eukaryotes is performed by the spliceosome, a highly complex macromolecular machine. SF3b is a multi-protein complex which recognizes the branch point adenosine of pre-mRNA as part of a larger U2 snRNP or U11/U12 di-snRNP in the dynamic spliceosome machinery. Although a cryo-EM map is available for human SF3b complex, the structure and relative spatial arrangement of all components in the complex are not yet known. We have recognized folds of domains in various proteins in the assembly and generated comparative models. Using an integrative approach involving structural and other experimental data, guided by the available cryo-EM density map, we deciphered a pseudo-atomic model of the closed form of SF3b which is found to be a "fuzzy complex" with highly flexible components and multiplicity of folds. Further, the model provides structural information for 5 proteins (SF3b10, SF3b155, SF3b145, SF3b130 and SF3b14b) and localization information for 4 proteins (SF3b10, SF3b145, SF3b130 and SF3b14b) in the assembly for the first time. Integration of this model with the available U11/U12 di-snRNP cryo-EM map enabled elucidation of an open form. This now provides new insights on the mechanistic features involved in the transition between closed and open forms pivoted by a hinge region in the SF3b155 protein that also harbors cancer causing mutations. Moreover, the open form guided model of the 5' end of U12 snRNA, which includes the branch point duplex, shows that the architecture of SF3b acts as a scaffold for U12 snRNA: pre-mRNA branch point duplex formation with potential implications for branch point adenosine recognition fidelity.


Asunto(s)
Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
10.
BMC Bioinformatics ; 15: 343, 2014 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-25282152

RESUMEN

BACKGROUND: The function of a protein can be deciphered with higher accuracy from its structure than from its amino acid sequence. Due to the huge gap in the available protein sequence and structural space, tools that can generate functionally homogeneous clusters using only the sequence information, hold great importance. For this, traditional alignment-based tools work well in most cases and clustering is performed on the basis of sequence similarity. But, in the case of multi-domain proteins, the alignment quality might be poor due to varied lengths of the proteins, domain shuffling or circular permutations. Multi-domain proteins are ubiquitous in nature, hence alignment-free tools, which overcome the shortcomings of alignment-based protein comparison methods, are required. Further, existing tools classify proteins using only domain-level information and hence miss out on the information encoded in the tethered regions or accessory domains. Our method, on the other hand, takes into account the full-length sequence of a protein, consolidating the complete sequence information to understand a given protein better. RESULTS: Our web-server, CLAP (Classification of Proteins), is one such alignment-free software for automatic classification of protein sequences. It utilizes a pattern-matching algorithm that assigns local matching scores (LMS) to residues that are a part of the matched patterns between two sequences being compared. CLAP works on full-length sequences and does not require prior domain definitions.Pilot studies undertaken previously on protein kinases and immunoglobulins have shown that CLAP yields clusters, which have high functional and domain architectural similarity. Moreover, parsing at a statistically determined cut-off resulted in clusters that corroborated with the sub-family level classification of that particular domain family. CONCLUSIONS: CLAP is a useful protein-clustering tool, independent of domain assignment, domain order, sequence length and domain diversity. Our method can be used for any set of protein sequences, yielding functionally relevant clusters with high domain architectural homogeneity. The CLAP web server is freely available for academic use at http://nslab.mbu.iisc.ernet.in/clap/.


Asunto(s)
Biología Computacional/métodos , Internet , Proteínas/química , Proteínas/clasificación , Programas Informáticos , Algoritmos , Secuencia de Aminoácidos , Automatización , Análisis por Conglomerados , Humanos , Estructura Terciaria de Proteína
11.
Proteins ; 82(7): 1219-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24375512

RESUMEN

With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Teorema de Bayes , Evolución Molecular , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Curva ROC
12.
Cell Rep ; 42(12): 113484, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999976

RESUMEN

The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Autofagia/fisiología , Mutación/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
13.
J Phys Chem Lett ; 12(7): 1926-1931, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33591770

RESUMEN

Living cells constantly remodel the shape of their lipid membranes. In the endoplasmic reticulum (ER), the reticulon homology domain (RHD) of the reticulophagy regulator 1 (RETR1/FAM134B) forms dense autophagic puncta that are associated with membrane removal by ER-phagy. In molecular dynamics (MD) simulations, we find that FAM134B-RHD spontaneously forms clusters, driven in part by curvature-mediated attractions. At a critical size, as in a nucleation process, the FAM134B-RHD clusters induce the formation of membrane buds. The kinetics of budding depends sensitively on protein concentration and bilayer asymmetry. Our MD simulations shed light on the role of FAM134B-RHD in ER-phagy and show that membrane asymmetry can be used to modulate the kinetic barrier for membrane remodeling.


Asunto(s)
Retículo Endoplásmico/química , Péptidos y Proteínas de Señalización Intracelular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Autofagia , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
14.
Proteins ; 78(5): 1228-42, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19938155

RESUMEN

To understand structural and thermodynamic features of disulfides within an alpha-helix, a non-redundant dataset comprising of 5025 polypeptide chains containing 2311 disulfides was examined. Thirty-five examples were found of intrahelical disulfides involving a CXXC motif between the N-Cap and third helical positions. GLY and PRO were the most common amino acids at positions 1 and 2, respectively. The N-Cap residue for disulfide bonded CXXC motifs had average (phi,psi) values of (-112 +/- 25.2 degrees , 106 +/- 25.4 degrees ). To further explore conformational requirements for intrahelical disulfides, CYS pairs were introduced at positions N-Cap-3; 1,4; 7,10 in two helices of an Escherichia coli thioredoxin mutant lacking its active site disulfide (nSS Trx). In both helices, disulfides formed spontaneously during purification only at positions N-Cap-3. Mutant stabilities were characterized by chemical denaturation studies (in both oxidized and reduced states) and differential scanning calorimetry (oxidized state only). All oxidized as well as reduced mutants were destabilized relative to nSS Trx. All mutants were redox active, but showed decreased activity relative to wild-type thioredoxin. Such engineered disulfides can be used to probe helix start sites in proteins of unknown structure and to introduce redox activity into proteins. Conversely, a protein with CYS residues at positions N-Cap and 3 of an alpha-helix is likely to have redox activity.


Asunto(s)
Secuencias de Aminoácidos , Disulfuros/química , Péptidos/química , Estructura Secundaria de Proteína , Dicroismo Circular , Cisteína/química , Cisteína/metabolismo , Bases de Datos de Proteínas , Insulina/química , Datos de Secuencia Molecular , Mutagénesis , Oxidación-Reducción , Péptidos/genética , Desnaturalización Proteica , Pliegue de Proteína , Termodinámica , Tiorredoxinas/química , Tiorredoxinas/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-19238400

RESUMEN

The perception of ultraviolet (UV) light by spiders has so far been only demonstrated in salticids. Crab spiders (Thomisidae) hunt mostly on flowers and need to find appropriate hunting sites. Previous studies have shown that some crab spiders that reflect UV light use UV contrast to enhance prey capture. The high UV contrast can be obtained either by modulation of body colouration or active selection of appropriate backgrounds for foraging. We show that crab spiders (Thomisus sp.) hunting on Spathiphyllum plants use chromatic contrast, especially UV contrast, to make themselves attractive to hymenopteran prey. Apart from that, they are able to achieve high UV contrast by active selection of non-UV reflecting surfaces when given a choice of UV-reflecting and non-UV reflecting surfaces in the absence of odour cues. Honeybees (Apis cerana) approached Spathiphyllum plants bearing crab spiders on which the spiders were high UV-contrast targets with greater frequency than those plants on which the UV contrast of the spiders was low. Thus, crab spiders can perceive UV and may use it to choose appropriate backgrounds to enhance prey capture, by exploiting the attraction of prey such as honeybees to UV.


Asunto(s)
Conducta Animal/fisiología , Conducta Predatoria/fisiología , Arañas/fisiología , Rayos Ultravioleta , Animales , Flores , Percepción Visual/fisiología
16.
J Phys Chem Lett ; 10(20): 6351-6354, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31566982

RESUMEN

The cell membrane and many organellar membranes are asymmetric and highly curved. In experiments, it is challenging to reconstitute and characterize membranes that differ in the lipid composition of their leaflets. Here we use molecular dynamics simulations to study the large-scale membrane shape changes associated with lipid shuttling between asymmetric leaflets. We exploit leaflet asymmetry to create a stable, near-spherical vesicle bud connected to a flat bilayer under periodic boundary conditions. Then we demonstrate how the lipid scramblase nhTMEM16 relaxes the lipid-number asymmetry. By mediating the flipping of lipids, this transmembrane protein dissipates the mechanochemical gradient between the leaflets and drives a large-scale membrane reorganization, converting the vesicle bud into a flat membrane. Our procedure to exploit bilayer asymmetry for simulations of highly curved membranes can be used to study the function of other lipid transporters and membrane-shaping proteins.


Asunto(s)
Proteínas Fúngicas/química , Membrana Dobles de Lípidos/química , Proteínas de Transferencia de Fosfolípidos/química , Simulación de Dinámica Molecular , Nectria/química , Fosfatidilcolinas/química
17.
Nat Commun ; 10(1): 2370, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147549

RESUMEN

FAM134B/RETREG1 is a selective ER-phagy receptor that regulates the size and shape of the endoplasmic reticulum. The structure of its reticulon-homology domain (RHD), an element shared with other ER-shaping proteins, and the mechanism of membrane shaping remain poorly understood. Using molecular modeling and molecular dynamics (MD) simulations, we assemble a structural model for the RHD of FAM134B. Through MD simulations of FAM134B in flat and curved membranes, we relate the dynamic RHD structure with its two wedge-shaped transmembrane helical hairpins and two amphipathic helices to FAM134B functions in membrane-curvature induction and curvature-mediated protein sorting. FAM134B clustering, as expected to occur in autophagic puncta, amplifies the membrane-shaping effects. Electron microscopy of in vitro liposome remodeling experiments support the membrane remodeling functions of the different RHD structural elements. Disruption of the RHD structure affects selective autophagy flux and leads to disease states.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Neoplasias/genética , Forma de los Orgánulos/genética , Autofagia , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intracelular , Liposomas/metabolismo , Liposomas/ultraestructura , Proteínas de la Membrana/genética , Microscopía Electrónica , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Transporte de Proteínas/genética
18.
ACS Nano ; 11(2): 1273-1280, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28103440

RESUMEN

The fusion of lipid membranes is opposed by high energetic barriers. In living organisms, complex protein machineries carry out this biologically essential process. Here we show that membrane-spanning carbon nanotubes (CNTs) can trigger spontaneous fusion of small lipid vesicles. In coarse-grained molecular dynamics simulations, we find that a CNT bridging between two vesicles locally perturbs their lipid structure. Their outer leaflets merge as the CNT pulls lipids out of the membranes, creating an hourglass-shaped fusion intermediate with still intact inner leaflets. As the CNT moves away from the symmetry axis connecting the vesicle centers, the inner leaflets merge, forming a pore that completes fusion. The distinct mechanism of CNT-mediated membrane fusion may be transferable, providing guidance in the development of fusion agents, e.g., for the targeted delivery of drugs or nucleic acids.

19.
Elife ; 62017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29280731

RESUMEN

Secretins form multimeric channels across the outer membrane of Gram-negative bacteria that mediate the import or export of substrates and/or extrusion of type IV pili. The secretin complex of Thermus thermophilus is an oligomer of the 757-residue PilQ protein, essential for DNA uptake and pilus extrusion. Here, we present the cryo-EM structure of this bifunctional complex at a resolution of ~7 Å using a new reconstruction protocol. Thirteen protomers form a large periplasmic domain of six stacked rings and a secretin domain in the outer membrane. A homology model of the PilQ protein was fitted into the cryo-EM map. A crown-like structure outside the outer membrane capping the secretin was found not to be part of PilQ. Mutations in the secretin domain disrupted the crown and abolished DNA uptake, suggesting a central role of the crown in natural transformation.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Fimbrias/química , Procesamiento de Imagen Asistido por Computador , Thermus thermophilus/química , Thermus thermophilus/enzimología , ADN/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Thermus thermophilus/metabolismo
20.
Front Mol Biosci ; 2: 20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075209

RESUMEN

Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA