Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Clin Nutr Metab Care ; 27(2): 168-177, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170686

RESUMEN

PURPOSE OF REVIEW: Traumatic brain injury (TBI) is a significant public health concern with substantial morbidity and mortality rates in the United States. Current management strategies primarily focus on symptomatic approaches and prevention of secondary complications. However, recent research highlights the potential role of ketone bodies, particularly beta-hydroxybutyrate (BHB), in modulating cellular processes involved in TBI. This article reviews the metabolism of BHB, its effect in TBI, and its potential therapeutic impact in TBI. RECENT FINDINGS: BHB can be produced endogenously through fasting or administered exogenously through ketogenic diets, and oral or intravenous supplements. Studies suggest that BHB may offer several benefits in TBI, including reducing oxidative stress, inflammation, controlling excitotoxicity, promoting mitochondrial respiration, and supporting brain regeneration. Various strategies to modulate BHB levels are discussed, with exogenous ketone preparations emerging as a rapid and effective option. SUMMARY: BHB offers potential therapeutic advantages in the comprehensive approach to improve outcomes for TBI patients. However, careful consideration of safety and efficacy is essential when incorporating it into TBI treatment protocols. The timing, dosage, and long-term effects of ketone use in TBI patients require further investigation to fully understand its potential benefits and limitations.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dieta Cetogénica , Humanos , Ácido 3-Hidroxibutírico/farmacología , Cuerpos Cetónicos/metabolismo , Estrés Oxidativo , Dieta Cetogénica/métodos
2.
Neurocrit Care ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740704

RESUMEN

BACKGROUND: Partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. METHODS: This is a prospective single-center cohort of consecutive patients with TBI admitted to a trauma center located at 2600 m above sea level. An unfavorable outcome was defined as a Glasgow Outcome Scale-Extended (GOSE) score < 4 at the 6-month follow-up. RESULTS: We had a total of 81 patients with complete data, 80% (65/81) were men, and the median (interquartile range) age was 36 (25-50) years. Median Glasgow Coma Scale (GCS) score on admission was 9 (6-14); 49% (40/81) of patients had severe TBI (GCS 3-8), 32% (26/81) had moderate TBI (GCS 12-9), and 18% (15/81) had mild TBI (GCS 13-15). The median (interquartile range) Abbreviated Injury Score of the head (AISh) was 3 (2-4). The frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), the median GOSE was 4 (2-5), and the median 6-month mortality rate was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, (median age 49 [30-72] vs. 29 [22-41] years, P < 0.01), had lower admission GCS scores (6 [4-8] vs. 13 [8-15], P < 0.01), had higher AISh scores (4 [4-4] vs. 3 [2-4], P < 0.01), had higher Acute Physiology and Chronic Health disease Classification System II scores (17 [15-23] vs. 10 [6-14], P < 0.01), had higher Charlson scores (0 [0-2] vs. 0 [0-0], P < 0.01), and had higher PaCO2 levels (mean 35 ± 8 vs. 32 ± 6 mm Hg, P < 0.01). In a multivariate analysis, age (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.1-1.30, P < 0.01), AISh (OR 4.7, 95% CI 1.55-21.0, P < 0.05), and PaCO2 levels (OR 1.23, 95% CI 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4, 95% CI 1.61-28.5, P = 0.017) and PaCO2 levels (OR 1.36, 95% CI 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. CONCLUSIONS: Higher PaCO2 levels are associated with an unfavorable outcome in ventilated patients with TBI. These results underscore the importance of PaCO2 levels in patients with TBI and whether it should be adjusted for populations living at higher altitudes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA