Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Circ Res ; 134(2): 143-161, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38156445

RESUMEN

BACKGROUND: Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology. METHODS: Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury. RESULTS: Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome. CONCLUSIONS: Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Anciano , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/metabolismo , Plaquetas/metabolismo , Hemorragia/metabolismo , Mitocondrias/metabolismo , Fosfatidilserinas/metabolismo
2.
Blood ; 140(23): 2477-2489, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35930749

RESUMEN

The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phosphorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular responses by regulating messenger RNA (mRNA) translation, and mRNA translation influences platelet production and function. However, the role of Mnk1 in megakaryocytes and platelets has not previously been studied. The present study investigated Mnk1 in megakaryocytes and platelets using both pharmacological and genetic approaches. We demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine megakaryocytes and platelets. Stimulating human and murine megakaryocytes and platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly diminished protein synthesis in megakaryocytes as measured by polysome profiling and [35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion, and integrin αIIbß3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of Pla2g4a mRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.


Asunto(s)
ARN Mensajero , Humanos , Animales , Ratones
3.
Blood ; 136(15): 1760-1772, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32844999

RESUMEN

There is heritability to interindividual variation in platelet count, and better understanding of the regulating genetic factors may provide insights for thrombopoiesis. MicroRNAs (miRs) regulate gene expression in health and disease, and megakaryocytes (MKs) deficient in miRs have lower platelet counts, but information about the role of miRs in normal human MK and platelet production is limited. Using genome-wide miR profiling, we observed strong correlations among human bone marrow MKs, platelets, and differentiating cord blood-derived MK cultures, and identified MK miR-125a-5p as associated with human platelet number but not leukocyte or hemoglobin levels. Overexpression and knockdown studies showed that miR-125a-5p positively regulated human MK proplatelet (PP) formation in vitro. Inhibition of miR-125a-5p in vivo lowered murine platelet counts. Analyses of MK and platelet transcriptomes identified LCP1 as a miR-125a-5p target. LCP1 encodes the actin-bundling protein, L-plastin, not previously studied in MKs. We show that miR-125a-5p directly targets and reduces expression of MK L-plastin. Overexpression and knockdown studies show that L-plastin promotes MK progenitor migration, but negatively correlates with human platelet count and inhibits MK PP formation (PPF). This work provides the first evidence for the actin-bundling protein, L-plastin, as a regulator of human MK PPF via inhibition of the late-stage MK invagination system, podosome and PPF, and PP branching. We also provide resources of primary and differentiating MK transcriptomes and miRs associated with platelet counts. miR-125a-5p and L-plastin may be relevant targets for increasing in vitro platelet manufacturing and for managing quantitative platelet disorders.


Asunto(s)
Plaquetas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Megacariocitos/citología , Megacariocitos/metabolismo , Glicoproteínas de Membrana/genética , MicroARNs/genética , Proteínas de Microfilamentos/genética , Trombopoyesis/genética , Actinas/metabolismo , Biomarcadores , Técnicas de Silenciamiento del Gen , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Interferencia de ARN
4.
Circ Res ; 126(4): 501-516, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31852401

RESUMEN

RATIONALE: Longitudinal studies are required to distinguish within versus between-individual variation and repeatability of gene expression. They are uniquely positioned to decipher genetic signal from environmental noise, with potential application to gene variant and expression studies. However, longitudinal analyses of gene expression in healthy individuals-especially with regards to alternative splicing-are lacking for most primary cell types, including platelets. OBJECTIVE: To assess repeatability of gene expression and splicing in platelets and use repeatability to identify novel platelet expression quantitative trait loci (QTLs) and splice QTLs. METHODS AND RESULTS: We sequenced the transcriptome of platelets isolated repeatedly up to 4 years from healthy individuals. We examined within and between individual variation and repeatability of platelet RNA expression and exon skipping, a readily measured alternative splicing event. We find that platelet gene expression is generally stable between and within-individuals over time-with the exception of a subset of genes enriched for the inflammation gene ontology. We show an enrichment among repeatable genes for associations with heritable traits, including known and novel platelet expression QTLs. Several exon skipping events were also highly repeatable, suggesting heritable patterns of splicing in platelets. One of the most repeatable was exon 14 skipping of SELP. Accordingly, we identify rs6128 as a platelet splice QTL and define an rs6128-dependent association between SELP exon 14 skipping and race. In vitro experiments demonstrate that this single nucleotide variant directly affects exon 14 skipping and changes the ratio of transmembrane versus soluble P-selectin protein production. CONCLUSIONS: We conclude that the platelet transcriptome is generally stable over 4 years. We demonstrate the use of repeatability of gene expression and splicing to identify novel platelet expression QTLs and splice QTLs. rs6128 is a platelet splice QTL that alters SELP exon 14 skipping and soluble versus transmembrane P-selectin protein production.


Asunto(s)
Empalme Alternativo , Plaquetas/metabolismo , Selectina-P/genética , Sitios de Carácter Cuantitativo/genética , RNA-Seq/métodos , Transcriptoma/genética , Exones/genética , Ontología de Genes , Humanos , Polimorfismo de Nucleótido Simple
5.
Blood Cells Mol Dis ; 92: 102624, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34775219

RESUMEN

The purpose of this research was to assess the effects of a microRNA (miRNA) cluster on platelet production. Human chromosome 19q13.41 harbors an evolutionarily conserved cluster of three miRNA genes (MIR99B, MIRLET7E, MIR125A) within 727 base-pairs. We now report that levels of miR-99b-5p, miR-let7e-5p and miR-125a-5p are strongly correlated in human platelets, and all are positively associated with platelet count, but not white blood count or hemoglobin level. Although the cluster regulates hematopoietic stem cell proliferation, the function of this genomic locus in megakaryocyte (MK) differentiation and platelet production is unknown. Furthermore, studies of individual miRNAs do not represent broader effects in the context of a cluster. To address this possibility, MK/platelet lineage-specific Mir-99b/let7e/125a knockout mice were generated. Compared to wild type littermates, cluster knockout mice had significantly lower platelet counts and reduced MK proplatelet formation, but no differences in MK numbers, ploidy, maturation or ultra-structural morphology, and no differences in platelet function. Compared to wild type littermates, knockout mice showed similar survival after pulmonary embolism. The major conclusions are that the effect of the Mir-99b/let7e/125a cluster is confined to a late stage of thrombopoiesis, and this effect on platelet number is uncoupled from platelet function.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , MicroARNs/genética , Animales , Plaquetas/citología , Eliminación de Gen , Humanos , Megacariocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Trombocitopenia/genética , Trombopoyesis
6.
Blood ; 133(19): 2013-2026, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30723081

RESUMEN

Evolving evidence indicates that platelets and megakaryocytes (MKs) have unexpected activities in inflammation and infection; whether viral infections upregulate biologically active, antiviral immune genes in platelets and MKs is unknown, however. We examined antiviral immune genes in these cells in dengue and influenza infections, viruses that are global public health threats. Using complementary biochemical, pharmacological, and genetic approaches, we examined the regulation and function of interferon-induced transmembrane protein 3 (IFITM3), an antiviral immune effector gene not previously studied in human platelets and MKs. IFITM3 was markedly upregulated in platelets isolated from patients during clinical influenza and dengue virus (DENV) infections. Lower IFITM3 expression in platelets correlated with increased illness severity and mortality in patients. Administering a live, attenuated DENV vaccine to healthy subjects significantly increased platelet IFITM3 expression. Infecting human MKs with DENV selectively increased type I interferons and IFITM3. Overexpression of IFITM3 in MKs was sufficient to prevent DENV infection. In naturally occurring, genetic loss-of-function studies, MKs from healthy subjects harboring a homozygous mutation in IFITM3 (rs12252-C, a common single-nucleotide polymorphism in areas of the world where DENV is endemic) were significantly more susceptible to DENV infection. DENV-induced MK secretion of interferons prevented infection of bystander MKs and hematopoietic stem cells. Thus, viral infections upregulate IFITM3 in human platelets and MKs, and IFITM3 expression is associated with adverse clinical outcomes. These observations establish, for the first time, that human MKs possess antiviral functions, preventing DENV infection of MKs and hematopoietic stem cells after local immune signaling.


Asunto(s)
Inmunidad Innata/inmunología , Megacariocitos/inmunología , Proteínas de la Membrana/inmunología , Proteínas de Unión al ARN/inmunología , Antivirales/inmunología , Dengue/inmunología , Vacunas contra el Dengue/inmunología , Humanos
7.
J Cell Physiol ; 234(8): 13042-13056, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30552679

RESUMEN

We previously reported that HOXA4, HOXA9, and HOXD10 are selectively expressed in colonic stem cells (SCs) and their overexpression contributes to colorectal cancer (CRC). Our goals here were to determine how these HOX genes are transcriptionally regulated and whether transcriptional dysregulation of HOX genes occurs in CRC. Accordingly, we used correlation analysis to identify genes that are expression-correlated or anticorrelated with HOXA4, HOXA9, and HOXD10. We then used Gene Ontology (GO) analysis to functionally classify these genes. The GO results for both HOXA4 and HOXD10 correlated gene sets for normal colon and CRC show functions mostly classified as developmental, transcriptional regulation, and DNA binding. This raised the question: Are these gene sets regulated by the same transcription factors (TFs)? Consequently, we used promoter analysis and interaction network toolset (PAINT) to identify commonly shared transcription response elements. The results indicated that completely different sets of TFs coregulate HOXA4 and HOXD10 (but not HOXA9) and their expression-correlated genes. And predicted TFs are altered in CRC compared with normal colon. Taken together, analysis of gene signatures correlated with expression of HOXA4 and HOXD10 indicates how these HOX genes are: (a) transcriptionally regulated in the normal colon; (b) dysregulated in CRC. This discovery provides a mechanism for targeting CRC SCs.


Asunto(s)
Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Factores de Transcripción/biosíntesis , Neoplasias del Colon/patología , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
8.
Am J Hum Genet ; 98(5): 883-897, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27132591

RESUMEN

Platelets play a central role in ischemic cardiovascular events. Cardiovascular disease (CVD) is a major cause of death worldwide. Numerous genome-wide association studies (GWASs) have identified loci associated with CVD risk. However, our understanding of how these variants contribute to disease is limited. Using data from the platelet RNA and expression 1 (PRAX1) study, we analyzed cis expression quantitative trait loci (eQTLs) in platelets from 154 normal human subjects. We confirmed these results in silico by performing allele-specific expression (ASE) analysis, which demonstrated that the allelic directionality of eQTLs and ASE patterns correlate significantly. Comparison of platelet eQTLs with data from the Genotype-Tissue Expression (GTEx) project revealed that a number of platelet eQTLs are platelet specific and that platelet eQTL peaks localize to the gene body at a higher rate than eQTLs from other tissues. Upon integration with data from previously published GWASs, we found that the trait-associated variant rs1474868 coincides with the eQTL peak for mitofusin 2 (MFN2). Additional experimental and computational analyses revealed that this eQTL is linked to an unannotated alternate MFN2 start site preferentially expressed in platelets. Integration of phenotype data from the PRAX1 study showed that MFN2 expression levels were significantly associated with platelet count. This study links the variant rs1474868 to a platelet-specific regulatory role for MFN2 and demonstrates the utility of integrating multi-omic data with eQTL analysis in disease-relevant tissues for interpreting GWAS results.


Asunto(s)
Plaquetas/metabolismo , GTP Fosfohidrolasas/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas Mitocondriales/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Sitios de Empalme de ARN/genética , Alelos , Biología Computacional/métodos , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Fenotipo
10.
Haematologica ; 104(10): 2075-2083, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30733267

RESUMEN

Apoptosis is a recognized limitation to generating large numbers of megakaryocytes in culture. The genes responsible have been rigorously studied in vivo in mice, but are poorly characterized in human culture systems. As CD34-positive (+) cells isolated from human umbilical vein cord blood were differentiated into megakaryocytes in culture, two distinct cell populations were identified by flow cytometric forward and side scatter: larger size, lower granularity (LLG), and smaller size, higher granularity (SHG). The LLG cells were CD41aHigh CD42aHigh phosphatidylserineLow, had an electron microscopic morphology similar to mature bone marrow megakaryocytes, developed proplatelets, and displayed a signaling response to platelet agonists. The SHG cells were CD41aLowCD42aLowphosphatidylserineHigh, had a distinctly apoptotic morphology, were unable to develop proplatelets, and showed no signaling response. Screens of differentiating megakaryocytes for expression of 24 apoptosis genes identified BCL2L2 as a novel candidate megakaryocyte apoptosis regulator. Lentiviral BCL2L2 overexpression decreased megakaryocyte apoptosis, increased CD41a+ LLG cells, and increased proplatelet formation by 58%. An association study in 154 healthy donors identified a significant positive correlation between platelet number and platelet BCL2L2 mRNA levels. This finding was consistent with the observed increase in platelet-like particles derived from cultured megakaryocytes over-expressing BCL2L2 BCL2L2 also induced small, but significant increases in thrombin-induced platelet-like particle αIIbß3 activation and P-selectin expression. Thus, BCL2L2 restrains apoptosis in cultured megakaryocytes, promotes proplatelet formation, and is associated with platelet number. BCL2L2 is a novel target for improving megakaryocyte and platelet yields in in vitro culture systems.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Sangre Fetal , Megacariocitos , Antígenos de Diferenciación/biosíntesis , Células Cultivadas , Sangre Fetal/citología , Sangre Fetal/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo
11.
J Cell Physiol ; 233(2): 727-735, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28464221

RESUMEN

Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC.


Asunto(s)
Proliferación Celular , Autorrenovación de las Células , Neoplasias Colorrectales/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Neoplásicas/metabolismo , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Células HT29 , Proteínas de Homeodominio/genética , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Factores de Transcripción , Transfección , Tretinoina/farmacología , Regulación hacia Arriba
13.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37471144

RESUMEN

Protease-activated receptor 4 (PAR4) (gene F2RL3) harbors a functional dimorphism, rs773902 A/G (encoding Thr120/Ala120, respectively) and is associated with greater platelet aggregation. The A allele frequency is more common in Black individuals, and Black individuals have a higher incidence of ischemic stroke than White individuals. However, it is not known whether the A allele is responsible for worse stroke outcomes. To directly test the in vivo effect of this variant on stroke, we generated mice in which F2rl3 was replaced by F2RL3, thereby expressing human PAR4 (hPAR4) with either Thr120 or Ala120. Compared with hPAR4 Ala120 mice, hPAR4 Thr120 mice had worse stroke outcomes, mediated in part by enhanced platelet activation and platelet-neutrophil interactions. Analyses of 7,620 Black subjects with 487 incident ischemic strokes demonstrated the AA genotype was a risk for incident ischemic stroke and worse functional outcomes. In humanized mice, ticagrelor with or without aspirin improved stroke outcomes in hPAR4 Ala120 mice, but not in hPAR4 Thr120 mice. P selectin blockade improved stroke outcomes and reduced platelet-neutrophil interactions in hPAR4 Thr120 mice. Our results may explain some of the racial disparity in stroke and support the need for studies of nonstandard antiplatelet therapies for patients expressing PAR4 Thr120.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Animales , Ratones , Receptores de Trombina/genética , Agregación Plaquetaria/genética , Plaquetas/fisiología , Inhibidores de Agregación Plaquetaria/farmacología , Accidente Cerebrovascular/genética , Receptor PAR-1
14.
Blood Adv ; 5(9): 2362-2374, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33944898

RESUMEN

Human anucleate platelets cannot be directly modified using traditional genetic approaches. Instead, studies of platelet gene function depend on alternative models. Megakaryocytes (the nucleated precursor to platelets) are the nearest cell to platelets in origin, structure, and function. However, achieving consistent genetic modifications in primary megakaryocytes has been challenging, and the functional effects of induced gene deletions on human megakaryocytes for even well-characterized platelet genes (eg, ITGA2B) are unknown. Here we present a rapid and systematic approach to screen genes for platelet functions in CD34+ cell-derived megakaryocytes called CRIMSON (CRISPR-edited megakaryocytes for rapid screening of platelet gene functions). By using CRISPR/Cas9, we achieved efficient nonviral gene editing of a panel of platelet genes in megakaryocytes without compromising megakaryopoiesis. Gene editing induced loss of protein in up to 95% of cells for platelet function genes GP6, RASGRP2, and ITGA2B; for the immune receptor component B2M; and for COMMD7, which was previously associated with cardiovascular disease and platelet function. Gene deletions affected several select responses to platelet agonists in megakaryocytes in a manner largely consistent with those expected for platelets. Deletion of B2M did not significantly affect platelet-like responses, whereas deletion of ITGA2B abolished agonist-induced integrin activation and spreading on fibrinogen without affecting the translocation of P-selectin. Deletion of GP6 abrogated responses to collagen receptor agonists but not thrombin. Deletion of RASGRP2 impaired functional responses to adenosine 5'-diphosphate (ADP), thrombin, and collagen receptor agonists. Deletion of COMMD7 significantly impaired multiple responses to platelet agonists. Together, our data recommend CRIMSON for rapid evaluation of platelet gene phenotype associations.


Asunto(s)
Plaquetas , Megacariocitos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Intercambio de Guanina Nucleótido , Humanos , Fenotipo , Trombopoyesis
15.
J Thromb Haemost ; 18(5): 1183-1196, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31997536

RESUMEN

BACKGROUND: Regulated protein synthesis is essential for megakaryocyte (MK) and platelet functions, including platelet production and activation. PDK1 (phosphoinositide-dependent kinase 1) regulates platelet functional responses and has been associated with circulating platelet counts. Whether PDK1 also directly regulates protein synthetic responses in MKs and platelets, and platelet production by MKs, remains unknown. OBJECTIVE: To determine if PDK1 regulates protein synthesis in MKs and platelets. METHODS: Pharmacologic PDK1 inhibitors (BX-795) and mice where PDK1 was selectively ablated in MKs and platelets (PDK1-/- ) were used. PDK1 signaling in MKs and platelets (human and murine) were assessed by immunoblots. Activation-dependent translation initiation and protein synthesis in MKs and platelets was assessed by probing for dissociation of eIF4E from 4EBP1, and using m7-GTP pulldowns and S35 methionine incorporation assays. Proplatelet formation by MKs, synthesis of Bcl-3 and MARCKs protein, and clot retraction were employed for functional assays. RESULTS: Inhibiting or ablating PDK1 in MKs and platelets abolished the phosphorylation of 4EBP1 and eIF4E by preventing activation of the PI3K and MAPK pathways. Inhibiting PDK1 also prevented dissociation of eIF4E from 4EBP1, decreased binding of eIF4E to m7GTP (required for translation initiation), and significantly reduced de novo protein synthesis. Inhibiting PDK1 reduced proplatelet formation by human MKs and blocked MARCKs protein synthesis. In both human and murine platelets, PDK1 controlled Bcl-3 synthesis. Inhibition of PDK1 led to complete failure of clot retraction in vitro. CONCLUSIONS: PDK1 is a previously unidentified translational regulator in MKs and platelets, controlling protein synthetic responses, proplatelet formation, and clot retraction.


Asunto(s)
Plaquetas , Megacariocitos , Animales , Retracción del Coagulo , Ratones , Transducción de Señal , Trombopoyesis
16.
J Thromb Haemost ; 17(3): 511-524, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30632265

RESUMEN

Essentials The action of microRNAs (miRs) in human megakaryocyte signaling is largely unknown. Cord blood-derived human megakaryocytes (MKs) were used to test the function of candidate miRs. miR-15a-5p negatively regulated MK GPVI-mediated αIIbß3 activation and α-granule release. miR-15a-5p acts as a potential "master-miR" regulating genes in the MK GPVI signaling pathway. SUMMARY: Background Megakaryocytes (MKs) invest their progeny platelets with proteins and RNAs. MicroRNAs (miRs), which inhibit mRNA translation into protein, are abundantly expressed in MKs and platelets. Although platelet miRs have been associated with platelet reactivity and disease, there is a paucity of information on the function of miRs in human MKs. Objective To identify MK miRs that regulate the GPVI signaling pathway in the MK-platelet lineage. Methods Candidate miRs associated with GPVI-mediated platelet aggregation were tested for functionality in cultured MKs derived from cord blood. Results An unbiased, transcriptome-wide screen in 154 healthy donors identified platelet miR-15a-5p as significantly negatively associated with CRP-induced platelet aggregation. Platelet agonist dose-response curves demonstrated activation of αIIbß3 in suspensions of cord blood-derived cultured MKs. Overexpression and knockdown of miR-15a-5p in these MKs reduced and enhanced, respectively, CRP-induced αIIbß3 activation but did not alter thrombin or ADP stimulation. FYN, SRGN, FCER1G, MYLK. and PRKCQ, genes involved in GPVI signaling, were identified as miR-15a-5p targets and were inhibited or de-repressed in MKs with miR-15a-5p overexpression or inhibition, respectively. Lentiviral overexpression of miR-15a-5p also inhibited GPVI-FcRγ-mediated phosphorylation of Syk and PLCγ2, GPVI downstream signaling molecules, but effects of miR-15a-5p on αIIbß3 activation did not extend to other ITAM-signaling receptors (FcγRIIa and CLEC-2). Conclusion Cord blood-derived MKs are a useful human system for studying the functional effects of candidate platelet genes. miR-15a-5p is a potential "master-miR" for specifically regulating GPVI-mediated MK-platelet signaling. Targeting miR-15a-5p may have therapeutic potential in hemostasis and thrombosis.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , MicroARNs/metabolismo , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Transducción de Señal , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Sangre Fetal/citología , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , MicroARNs/genética , Activación Plaquetaria/genética , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Transducción de Señal/genética
17.
Stem Cells Int ; 2018: 3569493, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154863

RESUMEN

HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development.

18.
J Mol Med (Berl) ; 92(8): 811-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24996520

RESUMEN

In this review, we summarize published findings on the involvement of HOX genes in oncogenesis. HOX genes are developmental genes--they code for proteins that function as critical master regulatory transcription factors during embryogenesis. Many reports have shown that the protein products of HOX genes also play key roles in the development of cancers. Based on our review of the literature, we found that the expression of HOX genes is not only up- or downregulated in most solid tumors but also that the expression of specific HOX genes in cancers tends to differ based on tissue type and tumor site. It was also observed that HOXC family gene expression is upregulated in most solid tumor types, including colon, lung, and prostate cancer. The two HOX genes that were reported to be most commonly altered in solid tumors were HOXA9 and HOXB13. HOXA were often reported to have altered expression in breast and ovarian cancers, HOXB genes in colon cancers, HOXC genes in prostate and lung cancers, and HOXD genes in colon and breast cancers. It was found that HOX genes are also regulated at the nuclear-cytoplasmic transport level in carcinomas. Tumors arising from tissue having similar embryonic origin (endodermal), including colon, prostate, and lung, showed relatively similar HOXA and HOXB family gene expression patterns compared to breast tumors arising from mammary tissue, which originates from the ectoderm. The differential expression of HOX genes in various solid tumors thus provides an opportunity to advance our understanding of cancer development and to develop new therapeutic agents.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos
19.
Stem Cells Dev ; 23(2): 167-79, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23980595

RESUMEN

Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.


Asunto(s)
Colon/patología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Células Madre/citología , Factores de Transcripción/genética , Transformación Celular Neoplásica/genética , Colon/citología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Proteínas de Homeodominio/biosíntesis , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/genética , ARN Mensajero/genética , Factores de Transcripción/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA