Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Inorg Chem ; 62(49): 20219-20227, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38010257

RESUMEN

Colloidal multinary chalcogenides (MnCs) have emerged as excellent optoelectronic materials, where S- and Se-based MnCs show considerable progress; however, the Te counterpart suffers from detrimental surface oxidation. Moreover, Te-based I-III-VI MnCs (e.g., AgInTe2) tend to form a one-dimensional (1-D) anisotropic structure via the self-assembly of surface-oxidized Te, thus restricting the isolation of AgInTe2 quantum dots (QDs). We report successful control of the self-assembly of Te-based MnCs to arrest the growth of AgInTe2 QDs by using a synergistic capping agent (dodecanethiol and oleic acid). The reaction proceeds with several intermediates, including hexagonal microrods (MR), tetragonal QDs in a chain arrangement, and tetragonal MRs. Importantly, we note that the incorporation of ZnS QDs triggers the breaking of the chain arrangement of the AgInTe2 QDs and the emergence of evenly distributed AgInTe2-ZnS Janus nanocrystals with significantly reduced long-term Te-oxidative properties. Arresting the AgInTe2 QD chain and the subsequent Janus nanocrystal formation could have promising opportunities for 1-D charge hopping and efficient charge transport for optoelectronic applications, respectively.

2.
Dev Biol ; 475: 245-255, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33548210

RESUMEN

The neural crest is a migratory stem cell population that contributes to various tissues and organs during vertebrate embryonic development. These cells possess remarkable developmental plasticity and give rise to many different cell types, including chondrocytes, osteocytes, peripheral neurons, glia, melanocytes, and smooth muscle cells. Although the genetic mechanisms underlying neural crest development have been extensively studied, many facets of this process remain unexplored. One key aspect of cellular physiology that has gained prominence in the context of embryonic development is metabolic regulation. Recent discoveries in neural crest biology suggest that metabolic regulation may play a central role in the formation, migration, and differentiation of these cells. This possibility is further supported by clinical studies that have demonstrated a high prevalence of neural crest anomalies in babies with congenital metabolic disorders. Here, we examine why neural crest development is prone to metabolic disruption and discuss how carbon metabolism regulates developmental processes like epithelial-to-mesenchymal transition (EMT) and cell migration. Finally, we explore how understanding neural crest metabolism may inform upon the etiology of several congenital birth defects.


Asunto(s)
Desarrollo Embrionario/fisiología , Cresta Neural/citología , Cresta Neural/embriología , Animales , Carbono/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Glucólisis/fisiología , Humanos , Cresta Neural/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Vertebrados/embriología
3.
Dev Biol ; 444 Suppl 1: S170-S180, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071217

RESUMEN

The neural crest is a migratory cell population that contributes to multiple tissues and organs during vertebrate embryonic development. It is remarkable in its ability to differentiate into an array of different cell types, including melanocytes, cartilage, bone, smooth muscle, and peripheral nerves. Although neural crest cells are formed along the entire anterior-posterior axis of the developing embryo, they can be divided into distinct subpopulations based on their axial level of origin. These groups of cells, which include the cranial, vagal, trunk, and sacral neural crest, display varied migratory patterns and contribute to multiple derivatives. While these subpopulations have been shown to be mostly plastic and to differentiate according to environmental cues, differences in their intrinsic potentials have also been identified. For instance, the cranial neural crest is unique in its ability to give rise to cartilage and bone. Here, we examine the molecular features that underlie such developmental restrictions and discuss the hypothesis that distinct gene regulatory networks operate in these subpopulations. We also consider how reconstructing the phylogeny of the trunk and cranial neural crest cells impacts our understanding of vertebrate evolution.


Asunto(s)
Cresta Neural/embriología , Cresta Neural/metabolismo , Cresta Neural/fisiología , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Cartílago , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Desarrollo Embrionario , Redes Reguladoras de Genes , Humanos , Melanocitos , Tubo Neural , Neurogénesis , Cráneo , Vertebrados/embriología
4.
Cancer Res ; 84(2): 226-240, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37963187

RESUMEN

Metastasis is a major cause of morbidity and mortality in patients with cancer, highlighting the need to identify improved treatment and prevention strategies. Previous observations in preclinical models and tumors from patients with small cell lung cancer (SCLC), a fatal form of lung cancer with high metastatic potential, identified the transcription factor NFIB as a driver of tumor growth and metastasis. However, investigation into the requirement for NFIB activity for tumor growth and metastasis in relevant in vivo models is needed to establish NFIB as a therapeutic target. Here, using conditional gene knockout strategies in genetically engineered mouse models of SCLC, we found that upregulation of NFIB contributes to tumor progression, but NFIB is not required for metastasis. Molecular studies in NFIB wild-type and knockout tumors identified the pioneer transcription factors FOXA1/2 as candidate drivers of metastatic progression. Thus, while NFIB upregulation is a frequent event in SCLC during tumor progression, SCLC tumors can employ NFIB-independent mechanisms for metastasis, further highlighting the plasticity of these tumors. SIGNIFICANCE: Small cell lung cancer cells overcome deficiency of the prometastatic oncogene NFIB to gain metastatic potential through various molecular mechanisms, which may represent targets to block progression of this fatal cancer type.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción NFI , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Ratones , Neoplasias Pulmonares/patología , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Oncogenes , Carcinoma Pulmonar de Células Pequeñas/patología
5.
Nat Cell Biol ; 25(10): 1506-1519, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37783795

RESUMEN

Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Astrocitos/patología , Neoplasias Pulmonares/metabolismo , Ecosistema , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Microambiente Tumoral
6.
Dev Cell ; 57(19): 2257-2272.e5, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36182685

RESUMEN

Yamanaka factors are essential for establishing pluripotency in embryonic stem cells, but their function in multipotent stem cell populations is poorly understood. Here, we show that OCT4 and SOX2 cooperate with tissue-specific transcription factors to promote neural crest formation. By assessing avian and human neural crest cells at distinct developmental stages, we characterized the epigenomic changes that occur during their specification, migration, and early differentiation. This analysis determined that the OCT4-SOX2 dimer is required to establish a neural crest epigenomic signature that is lost upon cell fate commitment. The OCT4-SOX2 genomic targets in the neural crest differ from those of embryonic stem cells, indicating the dimer displays context-specific functions. Binding of OCT4-SOX2 to neural crest enhancers requires pioneer factor TFAP2A, which physically interacts with the dimer to modify its genomic targets. Our results demonstrate how Yamanaka factors are repurposed in multipotent cells to control chromatin organization and define their developmental potential.


Asunto(s)
Cresta Neural , Factor 3 de Transcripción de Unión a Octámeros , Diferenciación Celular , Cromatina/metabolismo , Epigenómica , Humanos , Cresta Neural/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo
7.
Nat Cancer ; 3(11): 1351-1366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411318

RESUMEN

Radiation therapy is a mainstay of cancer treatment but does not always lead to complete tumor regression. Here we combine radiotherapy with blockade of the 'don't-eat-me' cell-surface molecule CD47 in small cell lung cancer (SCLC), a highly metastatic form of lung cancer. CD47 blockade potently enhances the local antitumor effects of radiotherapy in preclinical models of SCLC. Notably, CD47 blockade also stimulates off-target 'abscopal' effects inhibiting non-irradiated SCLC tumors in mice receiving radiation. These abscopal effects are independent of T cells but require macrophages that migrate into non-irradiated tumor sites in response to inflammatory signals produced by radiation and are locally activated by CD47 blockade to phagocytose cancer cells. Similar abscopal antitumor effects were observed in other cancer models treated with radiation and CD47 blockade. The systemic activation of antitumor macrophages following radiotherapy and CD47 blockade may be particularly important in patients with cancer who suffer from metastatic disease.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Ratones , Animales , Antígeno CD47 , Macrófagos , Fagocitosis , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
8.
Cancer Cell ; 40(11): 1423-1439.e11, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240778

RESUMEN

Intratumoral heterogeneity is a seminal feature of human tumors contributing to tumor progression and response to treatment. Current technologies are still largely unsuitable to accurately track phenotypes and clonal evolution within tumors, especially in response to genetic manipulations. Here, we developed epitopes for imaging using combinatorial tagging (EpicTags), which we coupled to multiplexed ion beam imaging (EpicMIBI) for in situ tracking of barcodes within tissue microenvironments. Using EpicMIBI, we dissected the spatial component of cell lineages and phenotypes in xenograft models of small cell lung cancer. We observed emergent properties from mixed clones leading to the preferential expansion of clonal patches for both neuroendocrine and non-neuroendocrine cancer cell states in these models. In a tumor model harboring a fraction of PTEN-deficient cancer cells, we observed a non-autonomous increase of clonal patch size in PTEN wild-type cancer cells. EpicMIBI facilitates in situ interrogation of cell-intrinsic and cell-extrinsic processes involved in intratumoral heterogeneity.


Asunto(s)
Neoplasias , Humanos , Epítopos , Neoplasias/patología , Evolución Clonal , Células Clonales/patología , Linaje de la Célula , Microambiente Tumoral
9.
Dev Cell ; 53(2): 199-211.e6, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32243782

RESUMEN

The Warburg effect is one of the metabolic hallmarks of cancer cells, characterized by enhanced glycolysis even under aerobic conditions. This physiological adaptation is associated with metastasis , but we still have a superficial understanding of how it affects cellular processes during embryonic development. Here we report that the neural crest, a migratory stem cell population in vertebrate embryos, undergoes an extensive metabolic remodeling to engage in aerobic glycolysis prior to delamination. This increase in glycolytic flux promotes Yap/Tead signaling, which activates the expression of a set of transcription factors to drive epithelial-to-mesenchymal transition. Our results demonstrate how shifts in carbon metabolism can trigger the gene regulatory circuits that control complex cell behaviors. These findings support the hypothesis that the Warburg effect is a precisely regulated developmental mechanism that is anomalously reactivated during tumorigenesis and metastasis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Glucólisis , Cresta Neural/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Embrión de Pollo , Pollos , Especificidad de Órganos , Factores de Transcripción/genética
10.
J Biosci ; 43(1): 25-47, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29485113

RESUMEN

In eukaryotes, in response to replication stress, DNA damage response kinase, ATR is activated, whose signalling abrogation leads to cell lethality due to aberrant fork remodelling and excessive origin firing. Here we report that inhibition of ATR kinase activity specifically during replication stress recovery results in persistent ATR signalling, evidenced by the presence of ATR-dependent phosphorylation marks (gamma H2AX, pChk1 and pRad17) and delayed cell cycle re-entry. Further, such disruption of ATR signalling attenuation leads to double-strand breaks, fork collapse and thereby 'replication catastrophe'. PPM1D phosphatase, a nucleolar localized protein, relocates to chromatin during replication stress and reverts back to nucleolus following stress recovery, under the control of ATR kinase action. Inhibition of ATR kinase activity, specifically during post replication stress, triggers dislodging of the chromatin-bound PPM1D from nucleus to cytoplasm followed by its degradation, thereby leading to persistence of activated ATR marks in the nuclei. Chemical inhibition of PPM1D activity or SiRNA mediated depletion of the protein during post replication stress recovery 'phenocopies' ATR kinase inhibition by failing to attenuate ATR signalling. Collectively, our observations suggest a novel role of ATR kinase in mediating its own signal attenuation via PPM1D recruitment to chromatin as an essential mechanism for restarting the stalled forks, cell-cycle re-entry and cellular recovery from replication stress.


Asunto(s)
Ciclo Celular/genética , Replicación del ADN , Proteína Fosfatasa 2C/genética , Transducción de Señal/genética , Transporte Activo de Núcleo Celular , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cromatina/química , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Fosforilación , Unión Proteica , Proteína Fosfatasa 2C/antagonistas & inhibidores , Proteína Fosfatasa 2C/metabolismo , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
11.
Elife ; 72018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30520734

RESUMEN

A crucial step in cell differentiation is the silencing of developmental programs underlying multipotency. While much is known about how lineage-specific genes are activated to generate distinct cell types, the mechanisms driving suppression of stemness are far less understood. To address this, we examined the regulation of the transcriptional network that maintains progenitor identity in avian neural crest cells. Our results show that a regulatory circuit formed by Wnt, Lin28a and let-7 miRNAs controls the deployment and the subsequent silencing of the multipotency program in a position-dependent manner. Transition from multipotency to differentiation is determined by the topological relationship between the migratory cells and the dorsal neural tube, which acts as a Wnt-producing stem cell niche. Our findings highlight a mechanism that rapidly silences complex regulatory programs, and elucidate how transcriptional networks respond to positional information during cell differentiation.


Asunto(s)
Proteínas Aviares/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Cresta Neural/metabolismo , Neuronas/metabolismo , Proteínas Wnt/genética , Dedos de Zinc/genética , Animales , Proteínas Aviares/metabolismo , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , MicroARNs/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Neuronas/citología , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transcripción Genética , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
12.
Cell Mol Bioeng ; 10(5): 433-450, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31719871

RESUMEN

INTRODUCTION: Skeletal muscle tissue development and regeneration relies on the proliferation, maturation and fusion of muscle progenitor cells (myoblasts), which arise transiently from muscle stem cells (satellite cells). Following muscle damage, myoblasts proliferate and differentiate in response to temporally-varying inflammatory cytokines, growth factors, and extracellular matrix cues, which stimulate a shared network of intracellular signaling pathways. Here we present an integrated data-modeling approach to elucidate synergies and antagonisms among proliferation and differentiation signaling axes in myoblasts stimulated by regeneration-associated ligands. METHODS: We treated mouse primary myoblasts in culture with combinations of eight regeneration-associated growth factors and cytokines in mixtures that induced additive, synergistic, and antagonistic effects on myoblast proliferation and differentiation responses. For these combinatorial stimuli, we measured the activation dynamics of seven signal transduction pathways using multiplexed phosphoprotein assays and scored proliferation and differentiation responses based on expression of myogenic commitment factors to assemble a cue-signaling-response data compendium. We interrogated the relationship between these signals and responses by partial least-squares (PLS) regression modeling. RESULTS: Partial least-squares data-modeling accurately predicted response outcomes in cross-validation on the training compendium (cumulative R 2 = 0.96). The PLS model highlighted signaling axes that distinctly govern myoblast proliferation (MEK-ERK, Stat3) and differentiation (JNK) in response to these combinatorial cues, and we confirmed these signal-response associations with small molecule perturbations. Unexpectedly, we observed that a negative feedback circuit involving the phosphatase DUSP6/MKP-3 auto-regulates MEK-ERK signaling in myoblasts. CONCLUSION: This data-modeling approach identified conflicting signaling axes that underlie muscle progenitor cell proliferation and differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA