Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 608(7921): 217-225, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896746

RESUMEN

Biological processes depend on the differential expression of genes over time, but methods to make physical recordings of these processes are limited. Here we report a molecular system for making time-ordered recordings of transcriptional events into living genomes. We do this through engineered RNA barcodes, based on prokaryotic retrons1, that are reverse transcribed into DNA and integrated into the genome using the CRISPR-Cas system2. The unidirectional integration of barcodes by CRISPR integrases enables reconstruction of transcriptional event timing based on a physical record through simple, logical rules rather than relying on pretrained classifiers or post hoc inferential methods. For disambiguation in the field, we will refer to this system as a Retro-Cascorder.


Asunto(s)
Sistemas CRISPR-Cas , ADN , Edición Génica , Expresión Génica , Almacenamiento y Recuperación de la Información , ARN , Transcripción Reversa , Sistemas CRISPR-Cas/genética , ADN/biosíntesis , ADN/genética , Edición Génica/métodos , Genoma/genética , Almacenamiento y Recuperación de la Información/métodos , Integrasas/metabolismo , Células Procariotas/metabolismo , ARN/genética , Factores de Tiempo
2.
Nat Chem Biol ; 18(2): 199-206, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949838

RESUMEN

Exogenous DNA can be a template to precisely edit a cell's genome. However, the delivery of in vitro-produced DNA to target cells can be inefficient, and low abundance of template DNA may underlie the low rate of precise editing. One potential tool to produce template DNA inside cells is a retron, a bacterial retroelement involved in phage defense. However, little effort has been directed at optimizing retrons to produce designed sequences. Here, we identify modifications to the retron non-coding RNA (ncRNA) that result in more abundant reverse-transcribed DNA (RT-DNA). By testing architectures of the retron operon that enable efficient reverse transcription, we find that gains in DNA production are portable from prokaryotic to eukaryotic cells and result in more efficient genome editing. Finally, we show that retron RT-DNA can be used to precisely edit cultured human cells. These experiments provide a general framework to produce DNA using retrons for genome modification.


Asunto(s)
ADN/química , ADN/genética , Escherichia coli/genética , Edición Génica/métodos , Animales , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Humanos , ARN Bacteriano , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Retroelementos , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 50(6): 3490-3504, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35293583

RESUMEN

Retrons are bacterial retroelements that produce single-stranded, reverse-transcribed DNA (RT-DNA) that is a critical part of a newly discovered phage defense system. Short retron RT-DNAs are produced from larger, structured RNAs via a unique 2'-5' initiation and a mechanism for precise termination that is not yet understood. Interestingly, retron reverse transcriptases (RTs) typically lack an RNase H domain and, therefore, depend on endogenous RNase H1 to remove RNA templates from RT-DNA. We find evidence for an expanded role of RNase H1 in the mechanism of RT-DNA termination, beyond the mere removal of RNA from RT-DNA:RNA hybrids. We show that endogenous RNase H1 determines the termination point of the retron RT-DNA, with differing effects across retron subtypes, and that these effects can be recapitulated using a reduced, in vitro system. We exclude mechanisms of termination that rely on steric effects of RNase H1 or RNA secondary structure and, instead, propose a model in which the tertiary structure of the single-stranded RT-DNA and remaining RNA template results in termination. Finally, we show that this mechanism affects cellular function, as retron-based phage defense is weaker in the absence of RNase H1.


Asunto(s)
Bacteriófagos , ADN Polimerasa Dirigida por ARN , Bacteriófagos/genética , ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
5.
Nat Protoc ; 18(6): 1866-1892, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059915

RESUMEN

Biological signals occur over time in living cells. Yet most current approaches to interrogate biology, particularly gene expression, use destructive techniques that quantify signals only at a single point in time. A recent technological advance, termed the Retro-Cascorder, overcomes this limitation by molecularly logging a record of gene expression events in a temporally organized genomic ledger. The Retro-Cascorder works by converting a transcriptional event into a DNA barcode using a retron reverse transcriptase and then storing that event in a unidirectionally expanding clustered regularly interspaced short palindromic repeats (CRISPR) array via acquisition by CRISPR-Cas integrases. This CRISPR array-based ledger of gene expression can be retrieved at a later point in time by sequencing. Here we describe an implementation of the Retro-Cascorder in which the relative timing of transcriptional events from multiple promoters of interest is recorded chronologically in Escherichia coli populations over multiple days. We detail the molecular components required for this technology, provide a step-by-step guide to generate the recording and retrieve the data by Illumina sequencing, and give instructions for how to use custom software to infer the relative transcriptional timing from the sequencing data. The example recording is generated in 2 d, preparation of sequencing libraries and sequencing can be accomplished in 2-3 d, and analysis of data takes up to several hours. This protocol can be implemented by someone familiar with basic bacterial culture, molecular biology and bioinformatics. Analysis can be minimally run on a personal computer.


Asunto(s)
ADN , Escherichia coli , Escherichia coli/genética , ADN/genética , Genómica , Biología Computacional , Sistemas CRISPR-Cas
6.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993281

RESUMEN

Bacteriophages, which naturally shape bacterial communities, can be co-opted as a biological technology to help eliminate pathogenic bacteria from our bodies and food supply1. Phage genome editing is a critical tool to engineer more effective phage technologies. However, editing phage genomes has traditionally been a low efficiency process that requires laborious screening, counter selection, or in vitro construction of modified genomes2. These requirements impose limitations on the type and throughput of phage modifications, which in turn limit our knowledge and potential for innovation. Here, we present a scalable approach for engineering phage genomes using recombitrons: modified bacterial retrons3 that generate recombineering donor DNA paired with single stranded binding and annealing proteins to integrate those donors into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. Moreover, the process is continuous, with edits accumulating in the phage genome the longer the phage is cultured with the host, and multiplexable, with different editing hosts contributing distinct mutations along the genome of a phage in a mixed culture. In lambda phage, as an example, recombitrons yield single-base substitutions at up to 99% efficiency and up to 5 distinct mutations installed on a single phage genome, all without counterselection and only a few hours of hands-on time.

7.
Chem Commun (Camb) ; 55(63): 9379-9382, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31317975

RESUMEN

Small-molecule natural products have been an essential source of pharmaceuticals to treat human diseases, but very little is known about their behavior inside dynamic, live human cells. Here, we demonstrate the first structure-activity-distribution relationship (SADR) study of complex natural products, the anti-cancer antimycin-type depsipeptides, using the emerging bioorthogonal Stimulated Raman Scattering (SRS) Microscopy. Our results show that the intracellular enrichment and distribution of these compounds are driven by their potency and specific protein targets, as well as the lipophilic nature of compounds.


Asunto(s)
Antimicina A/análogos & derivados , Antineoplásicos/química , Depsipéptidos/química , Antimicina A/química , Antimicina A/metabolismo , Antimicina A/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Depsipéptidos/metabolismo , Depsipéptidos/farmacología , Células HeLa , Humanos , Células MCF-7 , Microscopía Fluorescente , Espectrometría Raman , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA