Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Environ Contam Toxicol ; 81(2): 272-284, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34272567

RESUMEN

Soil, a connecting link between biotic and abiotic components of terrestrial ecosystem, receives different kinds of pollutants through various point and nonpoint sources. Among different sources of soil pollution, contaminated irrigation water is one of the most prominent sources affecting soils throughout the globe. The irrigation water (both surface and groundwater) is increasingly getting polluted with contaminants such as metal(loid)s due to various anthropogenic activities. The present study was conducted to analyze metal(loid) contents in agricultural soil samples (N = 24) collected from fields along the banks of rivers Beas and Sutlej flowing through Punjab state of India, using wavelength-dispersive X-ray fluorescence (WDXRF) spectroscopy. The soil samples were also analyzed for their genotoxic potential using Allium cepa root chromosomal aberration assay. The rivers Beas and Sutlej are contaminated with municipal and industrial effluents in different parts of Punjab. The soil samples analyzed were found to have higher contents of arsenic, cobalt and chromium in comparison with the reference values given by various international agencies. Pollution assessment using different indices like index of geo-accumulation, enrichment factor and contamination factor revealed that the soil samples were highly polluted with cobalt and arsenic. The Allium cepa assay revealed that maximum genotoxicity was found in soil samples having higher contents of As and Co. Pearson's correlation analysis revealed strong positive correlation between the different metal(loid)s which indicated common sources of these metal(loid)s. Therefore, efforts must be taken to reduce the levels of these metal(loid)s in these agricultural soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Daño del ADN , Ecosistema , Monitoreo del Ambiente , Metales Pesados/análisis , Metales Pesados/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
2.
Environ Monit Assess ; 193(4): 222, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33763761

RESUMEN

Vehicular emissions containing traces of different heavy metals are known to cause significant contamination of roadside soils and plants. The present study was conducted to investigate the heavy metal concentrations in roadside soil and plant samples (Alstonia scholaris, Nerium oleander, Tabernaemontana divaricata, and Thevetia peruviana) collected from urban areas of Amritsar city of Punjab, India, under different traffic densities. The soil and plant samples were collected in pre- and post-monsoon seasons from seven roadside sites under varying levels of traffic density and analyzed for four heavy metals (Cd, Cu, Pb, and Zn). In addition to that, total protein and carotenoid contents in plant samples were also determined. pH and electrical conductivity analysis of roadside soil samples revealed slight to strongly alkaline and non-saline nature of soil. Significant reduction in contents of total proteins and carotenoids was observed in plants collected from sites with moderate to high traffic density. The trend of heavy metal contents in plants and their corresponding soil samples was observed to be Zn > Cu > Pb > Cd for both the seasons. Index of geo-accumulation indicated moderate contamination of soil with metals analyzed, while bio-accumulation factor (BAF) showed both absorption and accumulation of metals in plants under study. The study revealed significant contamination of roadside soil and plants of Amritsar city which was linked to vehicular emissions posing potential risk to human health.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ciudades , Monitoreo del Ambiente , Humanos , India , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
3.
Bull Environ Contam Toxicol ; 106(6): 949-958, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33988727

RESUMEN

Globally, heavy metal contamination of natural waterways and surrounding environments due to anthropogenic activities has become a grave cause of concern. Therefore, the present study was conducted to analyze the ecological risk posed by heavy metals in sediment samples (N = 24) collected from different depths of Budha Nalah drain located in Ludhiana (Punjab, India). The concentration of As, Cd, Cr, Cu, Ni, Pb and Zn were found to be above the maximum permissible limits for metals in soils and sediments, which was attributed to anthropogenic activities (industrialization, urbanization and agriculture). The values observed for Contamination Factor, Enrichment Factor and Pollution Load Index revealed that sediment samples were highly contaminated by As, Cd, Cr and Pb. The ecological Risk Index (range: 212-1566) and Modified Risk Index (range: 2793-12,182) values indicated that high concentrations of metals (especially As, Cd, Cr and Pb) posed severe ecological risks in the areas around the drain.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , India , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
4.
Ecotoxicol Environ Saf ; 164: 722-731, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30176561

RESUMEN

The quality of soils under different land uses is getting deteriorated throughout the world due to various anthropogenic activities. This deterioration is highly complex in riverine floodplain areas due to contamination by multiple point and non-point sources and change in seasons. Therefore, a study was conducted to analyze seasonal (pre and post-monsoon) variations in physico-chemical characteristics, contents of metal(loid)s (Al, As, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sb and Zn) in riverine floodplain soils under three land uses (agricultural, riverbank and roadside) from areas around the rivers Beas and Sutlej in Punjab, India. Further, analysis was done to assess the ecological and genotoxic risks (Allium cepa genotoxicity assay) posed by metal(loid)s in these soils. It was observed that soil samples under the three land uses were slightly alkaline (pre-monsoon) to acidic (post-monsoon) in nature with sandy texture and low soil organic matter. The levels of most metal(loid)s increased in post-monsoon soil samples under the three land uses, which was attributed to increase in soil organic matter, silt and clay contents in post-monsoon samples due to precipitation, flooding and sedimentation. The ecological Risk Index (58.3-104.5) and Modified Risk Index (145.2-178.9) calculated to analyze the level of ecological risks of metal(loid)s revealed that As, Cd and Sb posed moderate to considerable ecological risks in the agricultural and roadside soils in both seasons. Allium cepa genotoxicity assay indicated that the metal(loid)s in studied soils can cause genotoxic effects in biological systems. Therefore, various steps such as reduction in use of agrochemicals, promotion of organic agricultural methods and decontamination of soils using techniques such as phytoremediation etc must be taken to ensure reduction and containment of metal(loid)s in such riverine floodplain areas.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Fenómenos Químicos , Daño del ADN , Ecología , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , India , Medición de Riesgo , Estaciones del Año
5.
Bull Environ Contam Toxicol ; 101(5): 637-643, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30361750

RESUMEN

Phytoremediation, a technique dependent on the heavy metal bioaccumulation and translocation in different parts of plants, is an efficient and environment friendly method for decontamination of soils from metals. In the present study, the bioaccumulation and translocation of heavy metals was analyzed in different parts of cotton plant grown in intensively cultivated agricultural fields of Malwa region of Punjab, India. The soils were found to be alkaline in nature with very high sand contents which resulted in low retention of metals (As, Cr, Cu, Mn, Sr and Zn) in soils. But, the bioaccumulation factor and translocation factor calculated for metal accumulation analysis in cotton plant parts were found to be above 1 (maximum 9.13 for Sr) which indicated that the cotton plant (a non-edible fibre crop) can prove to be a significant system for phytoremediation and an efficient green tool for decontamination of soils from heavy metals.


Asunto(s)
Biodegradación Ambiental , Gossypium/metabolismo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , India , Suelo
6.
J Diabetes Metab Disord ; 23(1): 73-99, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932901

RESUMEN

Background: Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective: This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods: Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results: This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion: Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35162623

RESUMEN

The present study was carried out to determine the physico-chemical characteristics and heavy metal contents in roadside soil samples collected during 2 sampling periods (September 2018 and April 2019) from 8 different roadside sites lying parallel to the Buddha Nullah, an old rivulet, flowing through Ludhiana, (Punjab) India. The contents (mg/kg) of seven metals (cadmium, chromium, cobalt, copper, lead, nickel and zinc) were estimated using a flame atomic absorption spectrophotometer. Among the metals analyzed, the contents of Cd, Co, Cu, Pb and Zn were found above the permissible limits. The results of the index of geoaccumulation (Igeo), contamination factor (CF), contamination degree (Cdeg), modified contamination degree (mCdeg), the Nemerow pollution index (PI) and pollution load index (PLI) indicate a moderate to high heavy metal contamination of the analyzed soil samples. The results of the potential ecological risk factor (ERi) and potential ecological risk index (RI) indicate a low to moderate risk of heavy metals in the studied soil samples. The Pearson correlation analysis revealed that most of the variables exhibited a statistically significant correlation with one or more variables during the two samplings. Multivariate analysis demonstrates that contents of heavy metals in the study area are influenced by anthropogenic and geogenic factors.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Contaminación Ambiental/análisis , India , Metales Pesados/análisis , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis
8.
Environ Sci Pollut Res Int ; 27(14): 17032-17042, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32146668

RESUMEN

Metal(loid) contamination of vital food grains such as wheat and rice is a very serious problem throughout the world because consumption of such contaminated food can lead to severe health effects in humans. Metal(loid) contamination of food crops can occur from different sources such as contaminated soil, irrigation water, and aerial deposition. Therefore, the present study was conducted to analyze potential non-carcinogenic and carcinogenic health impacts posed by different metal(loid)s (As Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, and Zn) via consumption of wheat and rice grown on metal(loid)-contaminated soils in areas around rivers (Beas and Sutlej) of Punjab, India. Among the metal(loid)s analyzed in wheat and rice samples, contents of As, Cd, Cr, Ni, and Pb were found to be above the international (FAO/WHO and EU) maximum permissible limits. The non-carcinogenic and carcinogenic health risk assessment of individual metal(loid)s revealed that As posed highest risk followed by Cd, Cu, Fe, Mn, and Pb. The values of indices calculated for analysis of combined non-carcinogenic, i.e., (hazard index; range 3.49-15.94) and carcinogenic (total carcinogenic risk index; range 8.30 × 10-4-131.62 × 10-4) risks for both crops were found to be many fold higher than the prescribed limits of 1.0 and 1.0 × 10-4, respectively. Thus, the analysis of combined risks posed by metal(loid)s indicated that human population consuming wheat and rice from the study area faced both non-carcinogenic and carcinogenic health risks. Therefore, immediate steps must be taken to reduce the levels of metal(loid)s in wheat and rice from the study area.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Humanos , India , Medición de Riesgo , Suelo
9.
Springerplus ; 5: 173, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27026870

RESUMEN

Berseem (Trifolium alexandrinum) is one of the main fodder crops of Punjab, India. But due to the heavy metal contamination of agricultural soils by anthropogenic activities, there is rise in metal bioaccumulation in crops like Berseem. In addition to human influence, heavy metal contents in soil are highly dependent on soil characteristics also. Therefore a study was conducted in areas having intensive agricultural practices to analyze physico-chemical characteristics of soils under Berseem cultivation and heavy metal bioaccumulation in Berseem. The studied soils were alkaline, sandy in texture and low in soil organic matter. Among the studied heavy metals (Cr, Cu, Cd, Co and Pb) in soil and Berseem, Cr content in Berseem was found to be above maximum permissible limits. Soil to Berseem metal bioaccmulation factor (BAF) was above 1 for Cr, Cu, Cd and Co in many samples and highest BAF was found for Co (4.625). Hence it can be concluded that Berseem from studied areas was unsafe for animal consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA