Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Appl Environ Microbiol ; 88(13): e0069022, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35695487

RESUMEN

High-throughput sequencing and high-pressure liquid chromatography (HPLC) methods were used to investigate the influences of microbial dynamics on the quality and biogenic amine (BA) content during fish sauce fermentation. The homogeneity of total viable bacteria and lactic acid bacteria in fish sauce becomes higher as fermentation progresses. Tetragenococcus was the key genus of fish sauce fermentation. Carnobacterium (38.43%) and Lentibacillus (41.01%) were the dominant genera in the samples fermented for 3 months and 18 months, respectively. These three bacterial genera were significantly related to the physicochemical characteristics and characteristic flavors of the sauces. Tetragenococcus was significantly positively correlated with nitrogen oxides, the main characteristic flavor components in fish sauce. The BA content in fish sauce fermentation increased from 106.88 to 376.03 mg/kg, and the content of histamine reached 115.30 mg/kg at the end of fermentation, indicating that fish sauce has health risks. About 66.67% of Lentibacillus isolates were able to produce a large amount of BA, suggesting that Lentibacillus was the key genus for BA accumulation in fish sauce fermentation. Research on reducing the content of BA in fish sauce by intervening with regard to the fermentation temperature showed that a safe fish sauce product could be obtained at the fermentation temperature of about 25°C. These results help us to understand the contribution of microbial community composition to fish sauce fermentation and provide a basis for improving the quality and safety of fermented fish sauce. IMPORTANCE Traditional fermentation of fish sauce is mainly carried out by complex microbial communities from raw anchovies and processing environments. However, it is still unclear how the environmental microbiota influences the quality and the safety of fish sauce products. Therefore, this study comprehensively explained the influence of microorganisms on the quality and safety of fish sauce during the fermentation process in terms of physicochemical characters, flavors, and BA. Additionally, the accumulation of BA in fish sauce fermentation was controlled by intervening in the fermentation temperature. This finding contributes to a deeper understanding of the role of environmental microbiota during fermentation and provides data support for improving the safety of fish sauce.


Asunto(s)
Aminas Biogénicas , Microbiología de Alimentos , Animales , Bacterias/genética , Enterococcaceae , Fermentación , Productos Pesqueros/análisis , Peces/microbiología
2.
Langmuir ; 38(44): 13437-13447, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36288509

RESUMEN

The removal of organic dyes and pathogenic bacteria from contaminated water remains a significant challenge. In the present study, S-type heterojunction Ag2MoO4/ZnFe2O4 (AMO/ZFO) composite nanofibers were synthesized by electrospinning and co-precipitation and fabricated into photoanodes. It is found that the constructed S-type heterojunction of AMO/ZFO composites effectively inhibits the recombination of photogenerated carriers, in addition to the benefits of more exposed active sites and a greater specific surface area. When several properties are improved, AMO/ZFO composites exhibit excellent photoelectrocatalytic performance. The results demonstrate that under visible light irradiation, the photoelectrocatalytic degradation rate of AMO/ZFO-3 to methylene blue reached 76.2% within 50 min, and the killing rate of Salmonella was 83.6% within 80 min. The enhanced photoelectrocatalytic activity was due to the synergy of both electrochemical and photocatalytic effects. More importantly, after four testing cycles, AMO/ZFO-3 still has a better ability to kill pathogenic bacteria and degrade organic dyes due to its high stability. This work provides a feasible method for oxidizing organic dyes and pathogenic bacteria.


Asunto(s)
Nanofibras , Catálisis , Luz , Colorantes/química , Azul de Metileno
3.
BMC Biotechnol ; 21(1): 56, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34587926

RESUMEN

BACKGROUND: Foodborne illness caused by Vibrio parahaemolyticus (V. parahaemolyticus) is generally associated with the consumption of seafood. Fish and other seafood can be contaminated with V. parahaemolyticus, natural inhabitants of the marine, estuarine, and freshwater environment. In this study, the antibacterial activities of benzyl isothiocyanate (BITC) against V. parahaemolyticus were investigated by both transcriptomic analysis and morphological verification. RESULTS: Treatment with 1/8 minimum inhibitory concentration (1/8 MIC) BITC resulted in 234 upregulated genes and 273 downregulated genes. The results validated by quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the relative expression levels of the six genes VP0820, VP0548, VP2233, VPA2362, fliA and fliG were only 31.0%, 31.1%, 55.8%, 57.0%, 75.3%, and 79.9% of the control group, respectively. Among them, genes VP2233, fliA and fliG are related to flagella and VP2362 can regulate a protein relevant to biofilm formation. Morphologically, we verified that the swimming diffusion diameter of V. parahaemolyticus was significantly reduced by 14.9% by bacterial swimming ability, and biofilm formation was significantly inhibited by treatment with 1/8 MIC BITC by crystal violet quantification assay. CONCLUSIONS: These results indicated that 1/8 MIC BITC had antibacterial effect on V. parahaemolyticus by inhibiting virulence gene expression related to flagella and biofilm.


Asunto(s)
Vibrio parahaemolyticus , Animales , Isotiocianatos/farmacología , Pruebas de Sensibilidad Microbiana , Transcriptoma , Vibrio parahaemolyticus/genética
4.
Methods ; 168: 94-101, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31181257

RESUMEN

A novel photoelectrochemical (PEC) immunosensor based on CdSe quantum dots (QDs) sensitized Ho3+/Yb3+-TiO2 for the detection of Vibrio parahaemolyticus (VP) was assembled. The working electrode was constructed via the layer-by-layer (LBL) method with the Ho3+/Yb3+-TiO2, CdSe QDs, NHS/EDC, antibody of VP (anti-VP), bovine serum albumin (BSA) modified on the surface of the FTO in sequence. Ascorbic acid (AA) acts as an electron donor to combine photogenerated holes in order to provide a stable current system. Ho3+ and Yb3+ co-doping TiO2 broadened the spectral response range of TiO2 to the infrared region and improved the photocurrent responsiveness of TiO2. The PEC immunosensor, with Ho3+/Yb3+ ratio of 1:5, Ho3+/Yb3+-TiO2 of 2 mg/mL and PBS solution of pH 7.4, had an optimal photocurrent responsiveness. Immobilization of anti-VP was by classical NHS/EDC coupling reactions between COOH groups of CdSe QDs and NH2 groups of the anti-VP. The results indicated that PEC immunosensors had a low detection limit of 25 CFU/mL, a wide detection range of 102-108 CFU/mL, high stability, low price, and short detection time. This method could be promising for the rapid and ultrasensitive detection of pathogenic microorganisms in the food.


Asunto(s)
Compuestos de Cadmio/química , Nanopartículas del Metal/química , Puntos Cuánticos , Compuestos de Selenio/química , Titanio/química , Vibrio parahaemolyticus/aislamiento & purificación , Animales , Anticuerpos Inmovilizados/química , Ácido Ascórbico/química , Técnicas Biosensibles/métodos , Bivalvos , Técnicas Electroquímicas/métodos , Electrodos , Holmio/química , Inmunoensayo/métodos , Límite de Detección , Fotoquímica/métodos , Alimentos Marinos , Albúmina Sérica Bovina/química , Difracción de Rayos X , Iterbio/química
5.
Appl Microbiol Biotechnol ; 104(17): 7457-7465, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32676711

RESUMEN

The serp gene codes for a protease that is considered to be an important factor associated with quorum sensing (QS)-based food spoilage caused by microorganisms. In this study, we evaluated the effect of temperature (4-37 °C) and QS inhibitors on the production of N-acyl-L-homoserine lactones (AHLs) and relative expression of the luxR/I, as well as serp in Hafnia alvei H4. Production of AHLs and expression of luxR/I were found to reach maximum levels at 10 °C, suggesting that the QS system of H. alvei H4 might have higher activity at low temperatures; similar result was also obtained for serp expression. Mutants of H. alvei H4 deficient in QS were used to identify the regulation of QS on serp expression. Significant reduction (P < 0.05) in serp expression was found in the mutants ∆luxR, ∆luxI, and ∆luxR/I, with ∆luxI and ∆luxR/I showing greater reduction than ∆luxR. Minimum inhibition concentrations (MIC) of Benzyl isothiocyanate and 3-Methylthiopropyl isothiocyanate for H. alvei H4 were determined to be 7.813 and 15.625 mM, respectively. Furthermore, the expression of serp, as well as that of luxR and luxI, was significantly repressed (P < 0.05) by the two QS inhibitors at 1/8 MIC and 1/16 MIC, indicating that these inhibitors might repress serp expression through affecting luxR and luxI expression in H. alvei H4. The findings of this study, therefore, suggested that food spoilage caused by H. alvei could be controlled through the application of QS inhibitors.


Asunto(s)
Hafnia alvei , Percepción de Quorum , Acil-Butirolactonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hafnia alvei/metabolismo , Serina , Serina Proteasas
6.
Curr Microbiol ; 77(9): 1997-2001, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32754853

RESUMEN

A Gram-positive, aerobic, motile and short rod-shaped bacterium, designated as strain G56T, was isolated from shrimp paste produced in Panjin, China. Grows in the presence of 1.0-25.0% (w/v) NaCl (optimum at 10%), pH 5.0-9.5 (optimally at 7.0) and 10-50 °C (optimally at 37 °C). Positive for catalase and oxidase activities, but lack the ability to reduce nitrate. Acids produce from D-ribose, D-xylose, D-galactose, glycerol and D-trehalose, but no acid is produced when salicin, D-mannose, D-cellobiose and L-sorbose are provided as substrates. The polar lipid extract is found to contain diphosphatidylglycerol, phosphatidylglycerol, an unknown glycolipid, and unidentified phospholipids. Fatty acids are mainly defined as anteiso-C15:0 (69.7%) and anteiso-C17:0 (23.3%). The G+C content of its DNA is 44.7 mol%. The draft genome of strain G56T is 3,209,087 bp in length and the average nucleotide identity value (ANI) and the digital DNA-DNA hybridization (DDH) values between strain G56T and L. juripiscarius JCM 12147T is 78.41% and 22.0%, respectively. Polyphasic taxonomic analysis classified strain G56T as a novel species in the genus Lentibacillus, and therefore, we named it as Lentibacillus panjinensis sp. nov..


Asunto(s)
Alimentos Fermentados , Fosfolípidos , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033098

RESUMEN

Salmonella typhimurium (S. typhimurium) is a common foodborne pathogen that not only causes diseases and contaminates food, but also causes considerable economic losses. Therefore, it is necessary to find effective and feasible methods to control S. typhimurium. In this study, changes in S. typhimurium after treatment with benzyl isothiocyanate (BITC) were detected by transcriptomics to explore the antibacterial effect of BITC at subinhibitory concentration. The results showed that, in contrast to the control group (SC), the BITC-treated group (SQ_BITC) had 197 differentially expressed genes (DEGs), of which 115 were downregulated and 82 were upregulated. We screened out eight significantly downregulated virulence-related genes and verified gene expression by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). We also selected motility and biofilm formation to observe the effects of BITC on the other virulence related factors of S. typhimurium. The results showed that both swimming and swarming were significantly inhibited. BITC also had a significant inhibitory effect on biofilm formation, and showed an effect on bacterial morphology. These results will be helpful for understanding the mechanism of the antibacterial action of BITC against S. typhimurium and other foodborne pathogens.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Isotiocianatos/farmacología , Salmonella typhimurium/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Pruebas de Sensibilidad Microbiana/métodos , Salmonella typhimurium/genética , Virulencia/efectos de los fármacos , Virulencia/genética , Factores de Virulencia/genética
8.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683671

RESUMEN

Staphylococcus aureus (S. aureus) is a common foodborne pathogen that leads to various diseases; therefore, we urgently need to identify different means to control this harmful pathogen in food. In this study, we monitored the transcriptional changes of S. aureus by RNA-seq analysis to better understand the effect of benzyl isothiocyanate (BITC) on the virulence inhibition of S. aureus and determined the bacteriostatic effect of BITC at subinhibitory concentrations. Our results revealed that, compared with the control group (SAC), the BITC-treated experimental group (SAQ_BITC) had 708 differentially expressed genes (DEGs), of which 333 genes were downregulated and the capsular polysaccharide (cp) was significantly downregulated. Furthermore, we screened five of the most virulent factors of S. aureus, including the capsular polysaccharide biosynthesis protein (cp5D), capsular polysaccharide synthesis enzyme (cp8F), thermonuclease (nuc), clumping factor (clf), and protein A (spa), and verified the accuracy of these significantly downregulated genes by qRT-PCR. At the same time, we used light microscopy, scanning electron microscopy (SEM) and inverted fluorescence microscopy (IFM) to observe changes in biofilm associated with the cp5D and cp8F. Therefore, these results will help to further study the basis of BITC for the antibacterial action of foodborne pathogenic bacteria.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , Staphylococcus aureus/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Regulación hacia Abajo/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Análisis de Secuencia de ARN/métodos , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Virulencia/genética , Factores de Virulencia/genética
9.
Molecules ; 21(11)2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27854344

RESUMEN

We aimed to explore the differences of thermal behaviors between insoluble collagen fibrils (ICFs) and pepsin-solubilized collagens (PSCs) from sea cucumber Stichopus japonicus. The unfolding/refolding sequences of secondary structures of ICFs and PSCs during the heating and cooling cycle (5 → 70 → 5 °C) were identified by Fourier transform infrared spectrometry combined with curve-fitting and 2D correlation techniques. ICFs showed a higher proportion of α-helical structures and higher thermostability than PSCs, and thus had more-stable triple helical structures. The sequences of changes affecting the secondary structures during heating were essentially the same between ICFs and PSCs. In all cases, α-helix structure was the most important conformation and it disappeared to form a ß-sheet structure. In the cooling cycle, ICFs showed a partially refolding ability, and the proportion of ß-sheet structure rose before the increasing proportion of α-helix structure. PSCs did not obviously refold during the cooling stage.


Asunto(s)
Colágeno/química , Replegamiento Proteico , Desplegamiento Proteico , Pepinos de Mar/química , Espectroscopía Infrarroja por Transformada de Fourier , Aminoácidos , Animales , Desnaturalización Proteica , Termodinámica
10.
Foods ; 13(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38472800

RESUMEN

Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food protein and lead to spoilage. The aim of this study was to evaluate the phase-dependent regulation of lux-type genes on the spoilage characteristics of H. alvei H4. The auto-inducer synthase gene luxI and a regulatory gene luxR of the quorum sensing systems in H. alvei H4 were knocked out to construct the mutant phenotypes. On this basis, the research found that the luxI and luxR genes had a strong positive influence on not only flagella-dependent swimming ability and biofilm formation but also the production of putrescine and cadaverine. The luxR gene could downregulate putrescine production. The maximum accumulation of putrescine in wild type, ΔluxI, ΔluxR and ΔluxIR were detected at 24 h, reaching up to 695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively. However, the luxI and luxR genes have a potential positive impact on the production of cadaverine. The maximum concentration of cadaverine produced by wild type, ΔluxI, ΔluxR and ΔluxIR were 252.7 mg/L, 194.5 mg/L, 175.1 mg/L and 154.2 mg/L at 72 h. Moreover, the self-organizing map analysis revealed the phase-dependent effects of two genes on spoilage properties. The luxI gene played a major role in the lag phase, while the luxR gene mainly acted in the exponential and stationary phases. Therefore, the paper provides valuable insights into the spoilage mechanisms of H. alvei H4.

11.
Foods ; 13(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275703

RESUMEN

In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.

12.
Microbiol Spectr ; 12(4): e0068723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391231

RESUMEN

Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N-octanoyl-l-homoserine lactone (C8-HSL) downregulated the expression of sdhC/fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM, thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI, promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS.IMPORTANCEAs one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.


Asunto(s)
Hafnia alvei , Percepción de Quorum , Percepción de Quorum/fisiología , Aminoácidos , Metionina , Glicina , Ácido Fólico , Serina
13.
Artículo en Inglés | MEDLINE | ID: mdl-38709426

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.

14.
J Hazard Mater ; 465: 133160, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064948

RESUMEN

Composite aerogels, formed by the combination of nanoscale polymers and highly efficient adsorbents, offer the potential to deploy adsorbent distinct separation properties into a processable matrix. This paper presents a method for the fabrication of low energy bio-aerogels with high ductility, excellent wet strength and favorable heat resistance, based on cellulose nanofibers (CNFs) bound by calcium carbonate particles (CaCO3) via a simple process of ice induction, cross-linking during freezing and freeze-drying. Due to induced defects, two-dimensional metal-organic layers (MOLs) were rich in mesoporous structure and embedded in the aerogel (AGCa-MOL), which exhibited a powerful adsorption capacity. AGCa-MOL could take full advantage of their hierarchical pores and available surface area to obtain high adsorption capacity (0.694-5.470 µmol/g) and rapid adsorption kinetics (5 min) for 14 heterocyclic aromatic amines (HAAs). Moreover, the CaCO3 particles and MOLs gave the AGCa-MOL excellent thermal stability, so that it could maintain excellent adsorption capacity at a high temperature (100 °C) and be applied as an adsorbent to remove HAAs in the boiling marinade. The intrinsic potential of composite aerogels was revealed due to the synergistic properties of the various components in the composite aerogel.

15.
Int J Biol Macromol ; 255: 128092, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979755

RESUMEN

Thrombosis is a serious threat to human health and life. Fucoidan, a sulfated polysaccharide from brown algae, could prevent coagulation and thrombus after intravenous administration. However, more efforts are still needed to develop its oral agent. In the present study, the absorption and excretion of fucoidan (90.8 kDa) and its degradation products, Dfuc1 (19.2 kDa) and Dfuc2 (5.5 kDa), were determined by HPLC-MS/MS after acid degradation and 1-phenyl-3-methyl-5-pyrazolone derivatization, and their anticoagulation and antithrombotic activities were evaluated in vivo after oral administration. Results showed that the maximum concentrations of fucoidan, Dfuc1 and Dfuc2 in rat plasma all achieved at 2 h after oral administration (150 mg/kg), and they were 41.1 ± 10.6 µg/mL, 45.3 ± 18.5 µg/mL and 59.3 ± 13.7 µg/mL, respectively. In addition, fucoidan, Dfuc1 and Dfuc2 could all prolong the activated partial thromboplastin time in vivo from 23.7 ± 2.7 s (blank control) to 25.1 ± 2.6 s, 27.1 ± 1.7 s and 29.4 ± 3.6 s, respectively. Moreover, fucoidan and its degradation products showed similar antithrombotic effect in carrageenan-induced thrombosis mice, and untargeted metabolomics analysis revealed that they all markedly regulated the carrageenan-induced metabolite disorders, especially the arachidonic acid metabolism. Thus, the degradation products of fucoidan with lower molecular weights are more attractive for the development of oral antithrombotic agents.


Asunto(s)
Anticoagulantes , Trombosis , Ratas , Ratones , Humanos , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Peso Molecular , Carragenina , Espectrometría de Masas en Tándem , Trombosis/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
16.
Food Chem ; 449: 139225, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599107

RESUMEN

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Asunto(s)
Aminas , Celulosa , Nanocompuestos , Adsorción , Aminas/química , Celulosa/química , Animales , Nanocompuestos/química , Compuestos Heterocíclicos/química , Bovinos , Porcinos , Salmón , Estructuras Metalorgánicas/química , Carne/análisis , Contaminación de Alimentos/análisis , Geles/química
17.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615856

RESUMEN

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Asunto(s)
Aminas , Celulosa , Compuestos Heterocíclicos , Estructuras Metalorgánicas , Nanofibras , Ácidos Ftálicos , Celulosa/química , Adsorción , Aminas/química , Nanofibras/química , Estructuras Metalorgánicas/química , Compuestos Heterocíclicos/química , Geles/química , Porosidad
18.
Foods ; 12(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37893700

RESUMEN

In this paper, amino-carboxymethyl chitosan (ACC) was prepared through amino carboxymethylation, which introduces -COOH and -NH2 groups to the chitosan (CS) chains. Meanwhile, dialdehyde starch (DAS) was produced by oxidizing corn starch using sodium periodate. To attain the optimal loading and long-time release of ε-polylysine (ε-PL), the ACC/DAS hydrogels were synthesized through the Schiff base reaction between the amino group on ACC and the aldehyde group in DAS. The molecular structure, microcosmic properties, loading capacity, and bacteriostatic properties of the four types of hydrogels containing different mass concentrations of ACC were investigated. The results showed that the dynamic imine bond C=N existed in the ACC/DAS hydrogels, which proved that the hydrogels were formed by the cross-linking of the Schiff base reaction. With the increasing mass concentration of the ACC, the cross-sectional morphology of the hydrogel became smoother, the thermal stability increased, and the swelling behavior was gradually enhanced. The tight network structure improved the ε-PL loading efficiency, with the highest value of 99.2%. Moreover, the loading of ε-PL gave the hydrogel good antibacterial properties. These results indicate that ACC/DAS hydrogel is potential in food preservation.

19.
Food Chem ; 419: 135984, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37044056

RESUMEN

This study aimed to investigate the synergistic effects of benzyl isothiocyanate (BITC) and resveratrol (RS) on Listeria monocytogenes and their application in chicken meat preservation. BITC combined with RS (BR) significantly enhanced the antimicrobial activity and inhibited the growth of Listeria monocytogenes within 24 h compared to individual treatment, as well as suppressing bacterial swimming and swarming motility, reducing biofilm formation by 56.4%, increasing cell membrane disruption, and inducing intracellular ROS surges. Synergistic effects were associated with the inhibition of biofilm formation, cell membrane destruction, and ROS production. Biofilm removal facilitated the direct antimicrobial action of BR. RS disrupted cell membrane permeability, allowing more BITC into the cells, resulting in increased intracellular antibacterial levels, cell membrane hyperpolarization, and rapid ROS accumulation. Furthermore, BR visibly slowed the microbial growth in chicken flesh stored at 25 °C and 4 °C. Therefore, BR is expected to be a new strategy for food preservation.


Asunto(s)
Listeria monocytogenes , Animales , Pollos , Resveratrol/farmacología , Carne/microbiología , Especies Reactivas de Oxígeno/farmacología , Conservación de Alimentos/métodos , Antibacterianos/farmacología , Microbiología de Alimentos , Recuento de Colonia Microbiana
20.
Microbiol Spectr ; : e0267123, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732782

RESUMEN

Hafnia species can cause food spoilage via the quorum-sensing (QS) system. Thus, strategies that target QS in these bacteria might be a good approach to safeguard the quality of processed food. In this study, the amino acid sequence of the LasI Ha protein, a key QS regulator from Hafnia alvei H4, was used to construct its 3D structure for the virtual screening of potential QS inhibitors (QSIs) from the Bioactive Compound database. Four potential QSIs were obtained, and these were all theaflavins (TFs). Among them, theaflavin-3,3´-digallate (TF3) was found to outperform the others, displaying a higher docking score according to molecular docking analysis, and required only a sub-minimal inhibitory concentration (31.25 mM) to cause a significant decrease in the production of the autoinducer N-acyl homoserine lactone in H. alvei H4 and up to 60.5% inhibition of its motility. Furthermore, molecular simulation results indicated that TF3 could stably bind to a cavity within LasI Ha to form stable hydrogen bonds and hydrophobic interactions with various key residues of the protein to exert the inhibitory effect. Thus, TF3 may be considered a potential compound to protect against food spoilage caused by H. alvei H4 via the quorum quenching. IMPORTANCE Hafnia alvei, the main strain studied in this paper, is often isolated from spoiled foods, especially refrigerated protein-based raw foods, and is generally considered to be a spoilage bacterium whose spoilage-causing properties may be closely related to its own very strong population-sensing activity, so the strategy of quorum quenching against H. alvei H4 may be a good way to guarantee the quality of processed foods. Given the current global requirements for food safety and quality, coupled with negative consumer perceptions of the excessive inclusion of synthetic chemicals in food products, the use of natural compounds as QSIs in the storage of aquatic food products would seem more attractive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA