Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39114943

RESUMEN

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.


Asunto(s)
Regiones Promotoras Genéticas , Animales , Regiones Promotoras Genéticas/genética , Proteína MioD/metabolismo , Proteína MioD/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Factores Reguladores Miogénicos/metabolismo , Factores Reguladores Miogénicos/genética , Urocordados/genética , Urocordados/embriología , Desarrollo de Músculos/genética
2.
Genome Res ; 31(1): 121-130, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328166

RESUMEN

The Cre/loxP system is a powerful tool for gene function study in vivo. Regulated expression of Cre recombinase mediates precise deletion of genetic elements in a spatially- and temporally-controlled manner. Despite the robustness of this system, it requires a great amount of effort to create a conditional knockout model for each individual gene of interest where two loxP sites must be simultaneously inserted in cis The current undertaking involves labor-intensive embryonic stem (ES) cell-based gene targeting and tedious micromanipulations of mouse embryos. The complexity of this workflow poses formidable technical challenges, thus limiting wider applications of conditional genetics. Here, we report an alternative approach to generate mouse loxP alleles by integrating a unique design of CRISPR donor with the new oviduct electroporation technique i-GONAD. Showing the potential and simplicity of this method, we created floxed alleles for five genes in one attempt with relatively low costs and a minimal equipment setup. In addition to the conditional alleles, constitutive knockout alleles were also obtained as byproducts of these experiments. Therefore, the wider applications of i-GONAD may promote gene function studies using novel murine models.


Asunto(s)
Gónadas , Alelos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen , Ratones , Ratones Transgénicos
3.
PLoS Genet ; 17(8): e1009729, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370738

RESUMEN

Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retroalimentación Fisiológica/fisiología , Proteínas de la Membrana/metabolismo , Proteína MioD/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Proteína MioD/fisiología , Mioblastos/metabolismo , Factor de Transcripción PAX7/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
4.
FASEB J ; 35(11): e21965, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34669999

RESUMEN

Obesity and metabolic disorders caused by energy surplus pose an increasing concern within the global population. Brown adipose tissue (BAT) dissipates energy through mitochondrial non-shivering thermogenesis, thus representing a powerful agent against obesity. Here we explore the novel role of a mitochondrial outer membrane protein, LETM1-domain containing 1 (LETMD1), in BAT. We generated a knockout (Letmd1KO ) mouse model and analyzed BAT morphology, function and gene expression under various physiological conditions. While the Letmd1KO mice are born normally and have normal morphology and body weight, they lose multilocular brown adipocytes completely and have diminished mitochondrial abundance, DNA copy number, cristae structure, and thermogenic gene expression in the intrascapular BAT, associated with elevated reactive oxidative stress. In consequence, the Letmd1KO mice fail to maintain body temperature in response to acute cold exposure without food and become hypothermic within 4 h. Although the cold-exposed Letmd1KO mice can maintain body temperature in the presence of food, they cannot upregulate expression of uncoupling protein 1 (UCP1) and convert white to beige adipocytes, nor can they respond to adrenergic stimulation. These results demonstrate that LETMD1 is essential for mitochondrial structure and function, and thermogenesis of brown adipocytes.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Mitocondrias/metabolismo , Proteínas Oncogénicas/fisiología , Receptores de Superficie Celular/fisiología , Termogénesis , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(15): 3864-3869, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581287

RESUMEN

Regeneration of skeletal muscle in response to injury occurs through fusion of a population of stem cells, known as satellite cells, with injured myofibers. Myomixer, a muscle-specific membrane micropeptide, cooperates with the transmembrane protein Myomaker to regulate embryonic myoblast fusion and muscle formation. To investigate the role of Myomixer in muscle regeneration, we used CRISPR/Cas9-mediated genome editing to generate conditional knockout Myomixer alleles in mice. We show that genetic deletion of Myomixer in satellite cells using a tamoxifen-regulated Cre recombinase transgene under control of the Pax7 promoter abolishes satellite cell fusion and prevents muscle regeneration, resulting in severe muscle degeneration after injury. Satellite cells devoid of Myomixer maintain expression of Myomaker, demonstrating that Myomaker alone is insufficient to drive myoblast fusion. These findings, together with prior studies demonstrating the essentiality of Myomaker for muscle regeneration, highlight the obligatory partnership of Myomixer and Myomaker for myofiber formation throughout embryogenesis and adulthood.


Asunto(s)
Proteínas de la Membrana/metabolismo , Músculo Esquelético/fisiopatología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Fusión Celular , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología
6.
Proc Natl Acad Sci U S A ; 114(45): 11950-11955, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078404

RESUMEN

Skeletal muscle formation requires fusion of mononucleated myoblasts to form multinucleated myofibers. The muscle-specific membrane proteins myomaker and myomixer cooperate to drive mammalian myoblast fusion. Whereas myomaker is highly conserved across diverse vertebrate species, myomixer is a micropeptide that shows relatively weak cross-species conservation. To explore the functional conservation of myomixer, we investigated the expression and function of the zebrafish myomixer ortholog. Here we show that myomixer expression during zebrafish embryogenesis coincides with myoblast fusion, and genetic deletion of myomixer using CRISPR/Cas9 mutagenesis abolishes myoblast fusion in vivo. We also identify myomixer orthologs in other species of fish and reptiles, which can cooperate with myomaker and substitute for the fusogenic activity of mammalian myomixer. Sequence comparison of these diverse myomixer orthologs reveals key amino acid residues and a minimal fusogenic peptide motif that is necessary for promoting cell-cell fusion with myomaker. Our findings highlight the evolutionary conservation of the myomaker-myomixer partnership and provide insights into the molecular basis of myoblast fusion.


Asunto(s)
Proteínas de la Membrana/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/genética , Mioblastos/metabolismo , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Fusión Celular , Línea Celular , Elefantes/genética , Desarrollo de Músculos/fisiología , Tiburones/genética , Tortugas/genética , Pez Cebra/embriología , Pez Cebra/genética
7.
PLoS Genet ; 9(7): e1003626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874225

RESUMEN

Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3' UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1(-/-)a2(+/-) ) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1(-/-)a2(+/-) mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , MicroARNs/genética , Factores de Transcripción/genética , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , MicroARNs/metabolismo , Termogénesis/genética , Termogénesis/fisiología , Factores de Transcripción/metabolismo
8.
J Cell Physiol ; 230(5): 1033-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25251157

RESUMEN

Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs.


Asunto(s)
Eliminación de Gen , Metabolismo de los Lípidos , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/metabolismo , Proteínas Quinasas Activadas por AMP , Adenilato Quinasa/metabolismo , Adipogénesis/genética , Animales , Células Cultivadas , Dieta Alta en Grasa , Conducta Alimentaria , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Transducción de Señal/genética
9.
Development ; 139(16): 2857-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22764051

RESUMEN

Microenvironmental oxygen (O(2)) regulates stem cell activity, and a hypoxic niche with low oxygen levels has been reported in multiple stem cell types. Satellite cells are muscle-resident stem cells that maintain the homeostasis and mediate the regeneration of skeletal muscles. We demonstrate here that hypoxic culture conditions favor the quiescence of satellite cell-derived primary myoblasts by upregulating Pax7, a key regulator of satellite cell self-renewal, and downregulating MyoD and myogenin. During myoblast division, hypoxia promotes asymmetric self-renewal divisions and inhibits asymmetric differentiation divisions without affecting the overall rate of proliferation. Mechanistic studies reveal that hypoxia activates the Notch signaling pathway, which subsequently represses the expression of miR-1 and miR-206 through canonical Hes/Hey proteins, leading to increased levels of Pax7. More importantly, hypoxia conditioning enhances the efficiency of myoblast transplantation and the self-renewal of implanted cells. Given the robust effects of hypoxia on maintaining the quiescence and promoting the self-renewal of cultured myoblasts, we predict that oxygen levels in the satellite cell niche play a central role in precisely balancing quiescence versus activation, and self-renewal versus differentiation, in muscle stem cells in vivo.


Asunto(s)
Hipoxia de la Célula/fisiología , Mioblastos Esqueléticos/trasplante , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología , Animales , Proliferación Celular , Células Cultivadas , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Proteína MioD/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/fisiología , Miogenina/metabolismo , Factor de Transcripción PAX7/metabolismo , Receptores Notch/metabolismo , Fase de Descanso del Ciclo Celular , Transducción de Señal , Nicho de Células Madre/fisiología
10.
Stem Cells ; 32(11): 2893-907, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25069613

RESUMEN

Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3ß, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.


Asunto(s)
Homeostasis/fisiología , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/fisiología , Mioblastos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología , Proteínas Quinasas Activadas por AMP , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hígado/metabolismo , Ratones , Regeneración/fisiología
11.
FASEB J ; 27(5): 1981-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23362117

RESUMEN

Myostatin (Mstn) is predominantly expressed in skeletal muscles and plays important roles in regulating muscle growth and development, as well as fat deposition. Mstn-knockout (Mstn(-/-)) mice exhibit increased muscle mass due to both hypertrophy and hyperplasia, and leaner body composition due to reduced fat mass. Here, we show that white adipose tissue (WAT) of Mstn(-/-) develops characteristics of brown adipose tissue (BAT) with dramatically increased expression of BAT signature genes, including Ucp1 and Pgc1α, and beige adipocyte markers Tmem26 and CD137. Strikingly, the observed browning phenotype is non-cell autonomous and is instead driven by the newly defined myokine irisin (Fndc5) secreted from Mstn(-/-) skeletal muscle. Within the muscle, Mstn(-/-) leads to increased expression of AMPK and its phosphorylation, which subsequently activates PGC1α and Fndc5. Together, our study defines a paradigm of muscle-fat crosstalk mediated by Fndc5, which is up-regulated and secreted from muscle to induce beige cell markers and the browning of WAT in Mstn(-/-) mice. These results suggest that targeting muscle Mstn and its downstream signaling represents a therapeutic approach to treat obesity and type 2 diabetes.


Asunto(s)
Adenilato Quinasa/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/fisiopatología , Fibronectinas/metabolismo , Miostatina/fisiología , Transactivadores/metabolismo , Animales , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción , Regulación hacia Arriba
12.
Curr Biol ; 34(9): R343-R345, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714160

RESUMEN

Repeated rounds of fusion between apposing myoblasts allow muscles to become multinucleated. New research finds that myoblasts undergoing fusion in the Drosophila embryo respond to hormone signaling from a nearby tissue, resulting in the activation of a myoblast-specific gene necessary for the fusion process.


Asunto(s)
Fusión Celular , Mioblastos , Animales , Mioblastos/metabolismo , Mioblastos/fisiología , Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transducción de Señal , Comunicación Celular
13.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559144

RESUMEN

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.

14.
J Lipid Res ; 54(8): 2214-2224, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23740968

RESUMEN

Brown adipose tissues (BAT) are derived from a myogenic factor 5 (Myf5)-expressing cell lineage and white adipose tissues (WAT) predominantly arise from non-Myf5 lineages, although a subpopulation of adipocytes in some WAT depots can be derived from the Myf5 lineage. However, the functional implication of the Myf5- and non-Myf5-lineage cells in WAT is unclear. We found that the Myf5-lineage constitution in subcutaneous WAT depots is negatively correlated to the expression of classical BAT and newly defined beige/brite adipocyte-specific genes. Consistently, fluorescent-activated cell sorting (FACS)-purified Myf5-lineage adipo-progenitors give rise to adipocytes expressing lower levels of BAT-specific Ucp1, Prdm16, Cidea, and Ppargc1a genes and beige adipocyte-specific CD137, Tmem26, and Tbx1 genes compared with the non-Myf5-lineage adipocytes from the same depots. Ablation of the Myf5-lineage progenitors in WAT stromal vascular cell (SVC) cultures leads to increased expression of BAT and beige cell signature genes. Strikingly, the Myf5-lineage cells in WAT are heterogeneous and contain distinct adipogenic [stem cell antigen 1(Sca1)-positive] and myogenic (Sca1-negative) progenitors. The latter differentiate robustly into myofibers in vitro and in vivo, and they restore dystrophin expression after transplantation into mdx mouse, a model for Duchenne muscular dystrophy. These results demonstrate the heterogeneity and functional differences of the Myf5- and non-Myf5-lineage cells in the white adipose tissue.


Asunto(s)
Adipocitos/química , Tejido Adiposo Blanco/química , Mioblastos/química , Factor 5 Regulador Miogénico/química , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos mdx , Mioblastos/citología , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo
15.
Mar Biotechnol (NY) ; 24(5): 1023-1038, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36083384

RESUMEN

The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive. Recent genetic studies using mice identified a long-sought fusion factor named Myomixer. To understand whether Myomixer is involved in the fiber-type specific fusion, we analyzed the transcriptional regulation of myomixer expression and characterized the muscle growth phenotype upon genetic deletion of myomixer in zebrafish. The data revealed that overexpression of Sonic Hedgehog (Shh) drastically inhibited myomixer expression and blocked myoblast fusion, recapitulating the phenotype upon direct genetic deletion of myomixer from zebrafish. The fusion defect in myomixer mutant embryos could be faithfully rescued upon re-expression of zebrafish myomixer gene or its orthologs from shark or human. Interestingly, myomixer mutant fish survived to adult stage though were notably smaller than wildtype siblings. Severe myopathy accompanied by the uncontrolled adipose infiltration was observed in both fast and slow muscle tissues of adult myomixer mutants. Collectively, our data highlight an indispensable role of myomixer gene for cell fusion during both embryonic muscle development and post-larval muscle growth.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mioblastos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Sci Adv ; 8(35): eadd2696, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054355

RESUMEN

Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.

17.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355126

RESUMEN

Myoblast fusion is essential for formations of myofibers, the basic cellular and functional units of skeletal muscles. Recent genetic studies in mice identified two long-sought membrane proteins, Myomaker and Myomixer, which cooperatively drive myoblast fusion. It is unknown whether and how human muscles, with myofibers of tremendously larger size, use this mechanism to achieve multinucleations. Here, we report an interesting fusion model of human myoblasts where Myomaker is sufficient to induce low-grade fusion, while Myomixer boosts its efficiency to generate giant myotubes. By CRISPR mutagenesis and biochemical assays, we identified MyoD as the key molecular switch of fusion that is required and sufficient to initiate Myomixer and Myomaker expression. Mechanistically, we defined the E-box motifs on promoters of Myomixer and Myomaker by which MyoD induces their expression for multinucleations of human muscle cells. Together, our study uncovered the key molecular apparatus and the transcriptional control mechanism underlying human myoblast fusion.

18.
Nat Commun ; 8: 14328, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28094257

RESUMEN

Satellite cells (SCs) are myogenic stem cells required for regeneration of adult skeletal muscles. A proper balance among quiescence, activation and differentiation is essential for long-term maintenance of SCs and their regenerative function. Here we show a function of Pten (phosphatase and tensin homologue) in quiescent SCs. Deletion of Pten in quiescent SCs leads to their spontaneous activation and premature differentiation without proliferation, resulting in depletion of SC pool and regenerative failure. However, prior to depletion, Pten-null activated SCs can transiently proliferate upon injury and regenerate injured muscles, but continually decline during regeneration, suggesting an inability to return to quiescence. Mechanistically, Pten deletion increases Akt phosphorylation, which induces cytoplasmic translocation of FoxO1 and suppression of Notch signalling. Accordingly, constitutive activation of Notch1 prevents SC depletion despite Pten deletion. Our findings delineate a critical function of Pten in maintaining SC quiescence and reveal an interaction between Pten and Notch signalling.


Asunto(s)
Células Madre Adultas/enzimología , Senescencia Celular , Fosfohidrolasa PTEN/metabolismo , Células Satélite del Músculo Esquelético/enzimología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos , Fosfohidrolasa PTEN/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo
19.
Science ; 356(6335): 323-327, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28386024

RESUMEN

Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84-amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.


Asunto(s)
Fusión Celular , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Mioblastos/fisiología , Animales , Diferenciación Celular , Línea Celular , Membrana Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fibroblastos/metabolismo , Fibroblastos/fisiología , Masculino , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Péptidos/genética , Péptidos/metabolismo
20.
Cell Rep ; 17(9): 2340-2353, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27880908

RESUMEN

Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G0) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting GAlert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the GAlert state, even in the absence of an injury. The GAlert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G0 entry of SCs and provide functional evidence that prolonged GAlert leads to stem cell depletion and regenerative failure.


Asunto(s)
Envejecimiento/patología , Desarrollo de Músculos , Músculo Esquelético/patología , Fosfohidrolasa PTEN/deficiencia , Células Satélite del Músculo Esquelético/patología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Desnervación , Eliminación de Gen , Hipertrofia , Ratones Noqueados , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Proteína MioD , Fosfohidrolasa PTEN/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA