Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(12): 8583-8591, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36883940

RESUMEN

In order to improve the performance of optical fiber sensing and expand its application, a photonic crystal fiber (PCF) plasmonic sensor with a U-shaped channel based on surface plasmon resonance (SPR) is proposed. We have studied the general influence rules of structural parameters such as the radius of the air hole, the thickness of the gold film and the number of U-shaped channels using COMSOL based on the finite element method. The dispersion curves and loss spectrum of the surface plasmon polariton (SPP) mode and the Y-polarization (Y-pol) mode as well as the distribution of the electric field intensity (normE) under various conditions are studied using the coupled mode theory. The maximum refractive index (RI) sensitivity achieved in the RI range of 1.38-1.43 is 24.1 µm RIU-1, which corresponds to a full width at half maximum (FWHM) of 10.0 nm, a figure of merit (FOM) of 2410 RIU-1 and a resolution of 4.15 × 10-6 RIU. The results show that the proposed sensor combines the SPR effect, which is extremely sensitive to changes in the RI of the surrounding medium and realizes real-time detection of the external environment by analyzing the light signal modulated by the sensor. In addition, the detection range and sensitivity can be extended by adjusting the structural parameters. The proposed sensor has a simple structure with excellent sensing performance, which provides a new idea and implementation method for real-time detection, long-range measurement, complex environment monitoring and highly integrated sensing, and has a strong potential practical value.

2.
Phys Chem Chem Phys ; 25(30): 20706-20714, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37489769

RESUMEN

In this work, we theoretically designed a dynamically changeable terahertz metamaterial absorber with intelligent switch and high sensitivity, wide band and narrow band perfect absorption based on the combination of Dirac semimetal (BDS) and vanadium dioxide (VO2). It features two methods for absorption adjustment: altering the Fermi energy level of BDS to modify the resonant frequency of the absorption peaks and utilizing the phase change of VO2 to regulate the absorption rate of the peaks. In addition, its rotational symmetric design ensures strong polarization-insensitivity. The simulation results demonstrate the presence of two narrowband absorption peaks and one mini-broadband absorption peak within the frequency range of 6.0-9.5 THz, all with absorption rates exceeding 90%. We provide an explanation of the absorption mechanism of the device, employing the relative impedance theory and localized surface plasmon resonance to analyze its electric field distribution. We also defined the refractive index sensitivity (S), which is SI = 378 GHz per RIU and SIII = 204 GHz per RIU. Our device possesses high sensitivity and two methods of adjusting absorption modes, which endow it with advantages in the fields of metamaterial absorbers, intelligent switch, and optical sensors.

3.
Angew Chem Int Ed Engl ; 62(50): e202312728, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37888877

RESUMEN

With increasing ecological and environmental concerns, tin (Sn)-based perovskite light-emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low-cost solution-processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)-based PeLEDs due to the fast crystallization rate of Sn-based perovskite films and undesired oxidation from Sn2+ to Sn4+ , leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high-quality phenethylammonium tin iodide (PEA2 SnI4 ) perovskite films by using L-glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2 SnI4 -based PeLEDs. We show that the hydrogen-bond and coordinate interactions between GSH and PEA2 SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state-of-the-art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2 SnI4 -based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn-based PeLEDs.

4.
Environ Sci Technol ; 56(17): 12702-12712, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35980135

RESUMEN

Uranium mining and nuclear fuel production have led to significant U contamination. Past studies have focused on the bioreduction of soluble U(VI) to insoluble U(IV) as a remediation method. However, U(IV) is susceptible to reoxidation and remobilization when conditions change. Here, we demonstrate that a combination of adsorption and bioreduction of U(VI) in the presence of an organic ligand (siderophore desferrioxamine B, DFOB) and the Fe-rich clay mineral nontronite partially alleviated this problem. DFOB greatly facilitated U(VI) adsorption into the interlayer of nontronite as a stable U(VI)-DFOB complex. This complex was likely reduced by bioreduction intermediates such as the Fe(II)-DFOB complex and/or through electron transfer within a ternary Fe(II)-DFOB-U(VI) complex. Bioreduction with DFOB alone resulted in a mobile aqueous U(IV)-DFOB complex, but in the presence of both DFOB and nontronite U(IV) was sequestered into a solid. These results provide novel insights into the mechanisms of U(VI) bioreduction and the stability of U and have important implications for understanding U biogeochemistry in the environment and for developing a sustainable U remediation approach.


Asunto(s)
Sideróforos , Uranio , Adsorción , Arcilla , Compuestos Férricos , Compuestos Ferrosos , Hierro , Minerales , Oxidación-Reducción
5.
Langmuir ; 37(16): 4859-4868, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33851844

RESUMEN

The thermal-condensation method is widely used for the synthesis of K-doped g-C3N4 photocatalysts, but the presence of organic byproducts in the resultant products is often overlooked in previous reports. Here, we demonstrated the universal presence of organic byproducts in K-doped g-C3N4 synthesized by typical thermal condensation of KOH/melamine, KOH/dicyandiamide, or KOH/urea. Taking the K-doped g-C3N4 photocatalysis for the degradation of dimethyl phthalate as an example, the negative influence of the organic byproducts on K-doped g-C3N4 photocatalysis was confirmed. Specifically, the organic byproducts can be gradually dissolved into the photocatalytic system of K-doped g-C3N4 as new and stable pollutants. Based on the solubility investigations on the byproducts in several solvents, hot-water washing was demonstrated to be a relatively effective approach to remove the organic byproducts from K-doped g-C3N4. The formation of organic byproducts during the synthesis of K-doped g-C3N4 could be ascribed to the fact that the presence of K salts in melamine, dicyandiamide, or urea molecules results in their insufficient thermal condensation into expected g-C3N4. The present work provides objective information about the K-doped g-C3N4 photocatalysts and reminds researchers about the influence of the organic byproducts on the applications of the other impurity-doped g-C3N4 photocatalysts.

6.
Anal Chem ; 91(9): 6155-6161, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990015

RESUMEN

o-Phenylenediamine (OPD)-based chromogenic reactions are worthy tools for the development of visual colorimetric assays. The chromogenic reactions are usually triggered by various oxidants, which is not easily tunable and incompatible with some analytes. Herein, we report that direct blue light irradiation can induce the autocatalytic oxidation of OPD to generate 2,3-diaminophenazine (oxidized-state OPD, oxOPD). The autocatalytic photo-oxidation reaction mechanism of OPD is mainly ascribed to the resonant energy transfer between ectronically excited oxOPD and dissolved oxygen to form singlet state oxygen with a high oxidation capacity, which accelerates the oxidation of OPD. We demonstrate that under neutral and alkaline environment, the photoinduced autocatalytic oxidation of OPD is able to be further enhanced by triaminotrinitrobenzene (TATB) explosive because of its inhibition effect on the aggregation caused quenching phenomenon of oxOPD. On this basis, a straightforward visual colorimetric assay for TATB with a tunable dynamic range is developed. This assay is capable of detecting TATB explosive concentrations as low as 2.7 nM. Notably, the obvious color change after addition of TATB enables a naked-eye readout with the lowest detectable TATB concentrations of 60 nM.


Asunto(s)
Luz , Fenilendiaminas/química , Trinitrobencenos/análisis , Catálisis , Colorimetría , Simulación de Dinámica Molecular , Oxidación-Reducción
7.
Anal Bioanal Chem ; 411(30): 8063-8071, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31768592

RESUMEN

There is great interest in detection of the level of 2,4,6-trinitrotoluene (TNT) explosive due to its importance in public security and environmental protection fields. The conventional chemical sensors do not simultaneously realize simple, rapid, sensitive, selective, and direct detection of TNT in different medium without sample pretreatment. Here we present a modified wood-based chemical sensor for visual colorimetric detection of TNT in water, air, and soil. The natural wood undergoes a delignified process, which is further functionalized by 3-aminopropyltriethoxysilane (APTES). When TNT solutions are introduced, the wood-based sensor shows a colorimetric transition from light yellow to brown for naked-eye readout because of the generation of Meisenheimer complex between APTES and TNT. The photographs are collected by smartphone camera, and the RGB components are extracted to calculate the adjusted intensity for qualitative detection of TNT. This visual colorimetric sensor for TNT solution displays a linearity in the range of 0.01-5 mM with a limit of detection of 3 µM. In addition, by taking advantage of its inherent mesostructure, the wood-based sensor can be employed for visual detection of TNT vapor as well. Furthermore, it is also able to directly detect TNT in wet soil samples based on capillary action, in which TNT carried by water transports upward along the wood microchannel, triggering the generation of Meisenheimer complex. Graphical Abstract.

8.
Angew Chem Int Ed Engl ; 58(24): 8103-8108, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30934162

RESUMEN

Two-dimensional (2D) photocatalysts are highly attractive for their great potential in environmental remediation and energy conversion. Herein, we report a novel layered zinc silicate (LZS) photocatalyst synthesized by a liquid-phase epitaxial growth route using silica derived from vermiculite, a layered silicate clay mineral, as both the lattice-matched substrate and Si source. The epitaxial growth of LZS is limited in the 2D directions, thus generating the vermiculite-type crystal structure and ultrathin nanosheet morphology with thicknesses of 8-15 nm and a lateral size of about 200 nm. Experimental observations and DFT calculations indicated that LZS has a superior band alignment for the degradation of organic pollutants and reduction of CO2 to CO. The material exhibited efficient photocatalytic performance for 4-chlorophenol (4-CP) degradation and CO2 conversion into CO and is the first example of a claylike 2D photocatalyst with strong photooxidation and photoreduction capabilities.

9.
Inorg Chem ; 57(24): 15280-15288, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30507184

RESUMEN

The crystal facet of the BiVO4 photoanode has potential influence on its charge-transfer and separation properties as well as water oxidation kinetics. In the present work, a BiVO4 polyhedral film with exposed {121}, {132}, {211}, and {251} high-index facets was synthesized by a facile Bi2O3 template-induced method and investigated as a photoanode for water oxidation. In comparison with the normal BiVO4 film with a {121} monohigh-index facet, the BiVO4 film with multihigh-index crystal facets shows higher activity and faster kinetics for photoelectrochemical water oxidation. Specifically, a higher photocurrent density of 1.21 mA/cm2 was achieved on the multihigh-index facet BiVO4 photoanode at 1.23 V versus reversible hydrogen electrode (RHE) in 0.1 M Na2SO4, which is about 200% improved over the normal BiVO4 photoanode (0.61 mA/cm2 at 1.23 V vs RHE). In addition, a negative shift of 300 mV onset potential for water oxidation was observed on the as-prepared BiVO4 photoanode (0.22 V vs RHE) relative to the normal BiVO4 photoanode (0.52 V vs RHE) in 0.1 M Na2SO4. Although the UV-vis absorbance property and water oxidation pathway not be changed, the charge-transfer and separation properties as well as the overall water oxidation kinetics on the multihigh-index facet BiVO4 film were boosted obviously. Theory calculations reveal that the adsorption of H2O molecules on BiVO4{121} and {132} high-index facets is energetically favorable for subsequent dissociation and oxidation relative to that on {010} and {110} low-index facets. Furthermore, the water oxidation limiting step on {121} and {132} high-index facets of BiVO4 is changed to the step of two protons reacting with •O to form •OOH species (•O + H2O(l) + 2H+ + 2e- → •OOH + 3H+ + 3e-), which is different from the limiting step on {010} and {110} low-index facets that corresponds to the dissociation of H2O to •OH (2H2O(l) + • → •OH + H2O(l) + H+ + e-). In addition, the overpotential of water oxidation limiting step on BiVO4{121} and {132} high-index facets is lower than that on {010} and {110} low-index facets.

10.
J Gen Virol ; 98(12): 3008-3025, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29120300

RESUMEN

Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (pY705-STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.


Asunto(s)
Enterovirus Humano A/genética , Evasión Inmune , MicroARNs/genética , ARN Mensajero/genética , Receptores de Interleucina-6/genética , Factor de Transcripción STAT3/genética , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Enterovirus Humano A/crecimiento & desarrollo , Enterovirus Humano A/inmunología , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , MicroARNs/inmunología , Mioblastos/inmunología , Mioblastos/virología , Neuronas/inmunología , Neuronas/virología , Fosforilación , ARN Mensajero/inmunología , Receptores de Interleucina-6/inmunología , Factor de Transcripción STAT3/inmunología , Transducción de Señal , Replicación Viral
11.
Arch Virol ; 160(1): 173-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25287131

RESUMEN

Enterovirus 71 (EV71) causes major outbreaks of hand, foot, and mouth disease. Host factors and signaling pathways exhibit important functions in the EV71 life cycle. We conducted algorithm analysis based on miRNA profiles and their target genes to identify the miRNAs and downstream signaling pathways involved in EV71 infection. The miRNA profiles of human rhabdomyosarcoma cells treated with interferon (IFN-)-α or IFN-γ were compared with those of cells infected with EV71. Genes targeted by differentially expressed miRNAs were identified and assigned to different signaling pathways according to public databases. The results showed that host miRNAs specifically responded to the viral infection and IFN treatment. Some miRNAs, including miR-124 and miR-491-3p, were regulated in opposite manners by the IFNs and EV71. Some signaling pathways regulated by both EV71 infection and IFN treatment were also predicted. These pathways included axon guidance, Wingless/Int1 (Wnt) signaling cascade, platelet-derived growth factor receptor (PDGFR)/PDGF, phosphatidylinositol 3-kinase (PI3K), Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK), transforming growth factor-beta receptor (TGF-ßR)/TGF-ß, SMAD2/3, insulin/insulin-like growth factor (IGF), bone morphogenetic protein (BMP), CDC42, ERB1, hepatocyte growth factor receptor (c-Met), eukaryotic translation initiation factor 4E (eIF4E), protein kinase A (PKA), and IFN-γ pathways. The identified miRNA and downstream signaling pathways would help to elucidate the interaction between the virus and the host. The genomics method using algorithm analysis also provided a new way to investigate the host factors and signaling pathways critical for viral replication.


Asunto(s)
Algoritmos , Enterovirus Humano A/fisiología , Regulación de la Expresión Génica/inmunología , MicroARNs/metabolismo , Modelos Biológicos , Transcriptoma , Línea Celular Tumoral , Humanos , Interferón-alfa/farmacología , Interferón gamma/farmacología , MicroARNs/genética , Rabdomiosarcoma/metabolismo
12.
Front Psychiatry ; 15: 1382301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957735

RESUMEN

During the first wave of COVID-19, China demonstrated a strong commitment to epidemic prevention and control. This case study focuses on Z University, which adopted closed management when the epidemic was serious, and examines the influence of COVID-19 on students' psychology and behavior through interviews with 10 students. The research reveals that while students perceive closed management during the epidemic as enhancing safety and promoting learning engagement to some extent, the epidemic also has adverse effects on their physical health, psychology, and social life. These impacts included deteriorating physical health, feelings of rebellion and depression regarding college life, alongside concerns and aspirations regarding future job stability. In the discussion, we suggest that higher education institutions can utilize this information to shape policies and procedures, particularly concerning mental health and risk communication, not only during the current pandemic but also in future emergency or disaster scenarios.

13.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337327

RESUMEN

Crystalline poly-para-xylylene (parylene) has the potential for use as a protective membrane to delay the nucleation of explosives by separating the explosives and their decomposition products to decrease the explosive sensitivity. Here, molecular dynamics (MD) and density functional theory (DFT) techniques were used to calculate the dissociative adsorption configurations of 1,1-diamino-2,2-dinitroethylene (FOX-7) on (001)- and (101)-oriented crystalline parylene membranes. Based on the results of the calculations, this work demonstrates that the -NO2-π electrostatic interactions are the dominant passivation mechanism of FOX-7 on these oriented surfaces. FOX-7 can dissociatively adsorb on oriented parylene membranes due to the interactions between the LUMO of the toluene (or methyl) groups on parylene and the HOMO of the -NO2 (or -NH2) groups on FOX-7. The formation of a new intermolecular H-bond with the ONO group leads to FOX-7 decomposition via intramolecular C-NO2 bond fission and nitro-to-nitrite rearrangement. The most likely adsorption configurations are described in terms of the decomposition products, surface active groups of parylene, binding behaviors, and N charge transfer. Importantly, the (001)-oriented parylene AF8 membrane is promising for use as a protective membrane to passivate the high-energy -NO2 bonds during the dissociative adsorption of FOX-7. This study offers a new perspective on the development of protective membranes for explosives.

14.
J Hazard Mater ; 468: 133725, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401209

RESUMEN

Clay minerals formations are potential geological barrier (host rocks) for the long-rerm storage of uranium tailing in deep geological repositories. However, there are still obstacles to the efficient retardation of uranium because of the competition between negatively charged regions at the clay minerals end face, surface and between layers, as well as low mineralization capacity. Herein, employing a simple method, we used sodium alginate (SA), an inexpensive natural polymer material, polyethylene (PE), and the natural clay minerals montmorillonite (Mt), nontronite (Nt), and beidellite (Bd) to prepare three hydrogel adsorbents, (denoted as Mt/PE-@SA, Nt/PE-@SA, and Bd/PE-@SA), respectively. The application of obtained hydrogel adsorbents further extends to uranium(VI) removal from aqueous. Due to the synergistic action of SA group and PE group, hydrogel adsorbents showed select adsorption and mineralization effect on uranium(VI), among which the maximum uranium(VI) adsorption capacity of Nt/PE-@SA was 133.3 mg·g-1 and Mt/PE-@SA exhibited strong selectivity for uranium(VI) in the presence of coexisting metal ions. Cyclic voltammetry studies indicated the mitigation and immobilization of uranium species onto adsorbents by both reduction and mineralization. Besides, the synergistic adsorption of SA and PE on clay minerals was hypothesized, and the idea was supported by structure optimizations results from Monte Carlo dynamics simulation (MCD). Three obtained hydrogel adsorbents structural model was constructed based on its physicochemical characterization, the low energy adsorption sites and adsorption energies are investigated using MCD simulation. The simulation results show that obtained hydrogel adsorbents have a strong interaction with uranium(VI), which ensures the high adsorption capacity of those materials. Most importantly, this work demonstrates a new strategy for preparing mineral-based hydrogel adsorbents with enough stability and provides a new perspective for uranium(VI) removal in complex environment.

15.
Dalton Trans ; 53(29): 12098-12106, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38973455

RESUMEN

In this paper, a broadband solar absorber is constructed and simulated based on the finite difference time domain method (FDTD). The modeled structure of the absorber consists of cyclic stacking of five absorber cells with different periods on refractory metal W, where a single absorber cell is composed of a three-layer SiO2-InAs-TiN square film. Due to the Fabry-Perot resonance and the surface plasmon resonance (SPR), an absorptivity greater than 90% within a bandwidth of 2599.5 nm was achieved for the absorber. Notably, one of these bands, 2001 nm, is a high-efficiency absorption with an absorption rate greater than 99%. The average absorption efficiency reaches 99.31% at an air mass of 1.5 (AM 1.5), and the thermal radiation efficiencies are 97.35% and 97.83% at 1000 K and 1200 K, respectively. At the same time, the structure of the absorber is also polarization-independent, and when the solar incidence angle is increased to 60°, it still achieves an average absorption of 90.83% over the entire wavelength band (280 nm to 3000 nm). The novelty of our work is to provide a design idea based on a unit structure with multiple cycles, which can effectively expand the absorption bandwidth of the absorber in the visible-near-infrared wavelengths. The excellent performances make the structure widely used in the field of solar energy absorption.

16.
J Hazard Mater ; 475: 134774, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870850

RESUMEN

Currently, the low cost and effective purification toward heavy metal ions in wastewater has garnered global attention. Herein, we used hydrothermal method to prepare highly dispersed calcium silicate hydrate in fluorite tailings. And the stacking thickness of calcium silicate hydrate layered morphology was less than 5 nm. For high concentration Cu2+ purification investigation in wastewater, we found that the equilibrium adsorption capacity reached 797.92 mg/g via the CSH with 3:2 Ca/Si molar ratio, be 1.43-21.8 times than that of reported data. Therein, the metal-metal exchange and deposition are the primary pathways for Cu2+ adsorption, and electrostatic attraction is the secondary pathway. And the relative ∼100 % removal rate of high-concentration Ni2+ and Cr3+ ions were confirmed via CSH prepared from different tailings. This method offers a cost-effective way to utilize tailings for preparing highly efficient adsorbents toward HMIs removal in wastewater.

17.
Materials (Basel) ; 16(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37629996

RESUMEN

As a typical brittle material, the tensile strength of concrete is much lower than its compressive strength. The main failure mode of concrete buildings under explosive and impact loading is spalling, so it is crucial to understand the dynamic tensile performance of concrete. This paper presents an experimental study on the dynamic tensile strength of steel-fiber-reinforced self-compacting concrete (SFRSCC). Specimens of two different self-compacting concrete (SCC) mixes (C40 and C60) and four different fiber volume fractions (0.5%, 1.0%, 1.5%, and 2.0%) are fabricated. Dynamic tensile strengths of SFRSCC are obtained using a modified Hopkinson bar system. The relationships between the dynamic tensile strength of the corresponding SCC mix, the quasi-static compressive strength, and the fiber volume fraction are discussed. An empirical equation is proposed. It is shown that SFRSCC with high compressive strength has higher dynamic tensile strength than low-strength SFRSCC for the same fiber content, and the dynamic tensile strength of SFRSCC possesses an approximately linear relation with the fiber volume fraction. The mechanism underlying this fiber-reinforcement effect is investigated.

18.
Neurosci Bull ; 39(3): 440-452, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36161582

RESUMEN

Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Circular , Enfermedades del Sistema Nervioso Central/genética
19.
Dalton Trans ; 52(24): 8294-8301, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37255020

RESUMEN

A thermally tunable terahertz window based on the combination of a metamaterial and the phase change material VO2 is proposed. The window is composed of two vanadium oxide films with a SiO2 layer sandwiched between them. The thermochromic phase change properties of VO2 are the key to the functionality of the window. By controlling the temperature around the room temperature of 300 K, our material can be used as a smart window and it is able to regulate both the absorption and transmission of external terahertz waves in response to changes in temperature. The absorbance can be regulated by more than 90% and the transmittance by more than 80%. The switching characteristics of the window are explained by the insulator-metal transition that vanadium oxide undergoes during the heating process, while localized surface plasmon resonance explains the perfect absorption. In addition, the designed window is not only insensitive to polarised waves, but is thermally flexible and maintains excellent performance over a wide angular range of 0° to 40°. This design will have significant potential for applications in stealth technologies, thermal sensing and switching, and terahertz energy harvesting.

20.
Environ Pollut ; 330: 121789, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164219

RESUMEN

Inorganic mineral particles play an important role in the formation of atmospheric aerosols in the Sichuan Basin. Atmospheric haze formation is accompanied by the phase transition of mineral particles under high humidity and stable climatic conditions. Backward trajectory analysis was used in this study to determine the migration trajectory of atmospheric mineral particles. Furthermore, Positive matrix factorization (PMF) was used to analyze the sources of atmospheric mineral particles. The phase transition mechanisms of atmospheric mineral particles were studied using ion chromatography, inductively coupled plasma emission spectrometry, total organic carbon analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, and grand canonical Monte Carlo methods. Three migration and phase transition paths were identified for the mineral particles. Sources of atmospheric mineral particles included combustion, vehicle emissions, industrial emissions, agricultural sources, and mineral dust. The main mineral phases in atmospheric particles, calcite and dolomite, were transformed into gypsum, and muscovite may be transformed into kaolinite. The phase transition of mineral particles seriously affects the formation of aerosols and worsens haze. Typically, along the Nanchong-Suining-Neijiang-Zigong-Yibin path, calcite is converted into gypsum under the influence of man-made inorganic pollution gases, which worsen the haze conditions and cause slight air pollution for 3-5 days. However, along the Guangyuan-Mianyang-Deyang-Chengdu-Meishan-Ya'an path, anthropogenic volatile organic compounds (VOCs) hindered gypsum formation from dolomite. Furthermore, dolomite and VOCs formed stable adsorption systems (system energies from -0.41 to -4.76 eV, long bonds from 0.20 to 0.24 nm). The adsorption system of dolomite and m/p-xylene, with low system energy (-1.46 eV/-1.33 eV) and significant correlation (r2 = 0.991, p < 0.01), was the main cause of haze formation. Consequently, calcite gypsification and dolomite--VOC synergism exacerbated regional haze conditions. This study provides a theoretical reference for the mechanism of aerosol formation in basin climates.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Sulfato de Calcio/análisis , Estaciones del Año , Carbonato de Calcio/análisis , Emisiones de Vehículos/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA