Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Cell ; 35(1): 318-335, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409008

RESUMEN

Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process. CLCa belongs to the CLC family, which includes anion/proton exchangers and anion channels. A mutation in a glutamate residue conserved across CLC exchangers is likely responsible for the conversion of exchangers to channels. Here, we show that CLCa with a mutation in glutamate 203 (E203) behaves as an anion channel in its native membrane. We introduced the CLCaE203A point mutation to investigate its physiological importance into the Arabidopsis clca knockout mutant. These CLCaE203A mutants displayed a growth deficit linked to the disruption of water homeostasis. Additionally, CLCaE203A expression failed to complement the defect in nitrate accumulation of clca and favored higher N-assimilation at the vegetative stage. Further analyses at the post-flowering stages indicated that CLCaE203A expression results in an increase in N uptake allocation to seeds, leading to a higher nitrogen use efficiency compared to the wild-type. Altogether, these results point to the critical function of the CLCa exchanger on the vacuole for plant metabolism and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Protones , Vacuolas/metabolismo , Nitrógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aniones/metabolismo , Plantas/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas
2.
Proc Natl Acad Sci U S A ; 114(16): E3354-E3363, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373552

RESUMEN

"Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Metales/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Raíces de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Transporte Iónico , Mutación , Fenotipo , Raíces de Plantas/crecimiento & desarrollo
3.
Plant Cell ; 22(5): 1575-91, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20484005

RESUMEN

Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death-associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico/genética , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Cloruro de Sodio/farmacología , Suelo , Estrés Fisiológico/efectos de los fármacos
4.
Mol Cell Biol ; 24(11): 4909-19, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15143183

RESUMEN

Early studies of glycogen synthase kinase 3 (GSK-3) in mammalian systems focused on its pivotal role in glycogen metabolism and insulin-mediated signaling. It is now recognized that GSK-3 is central to a number of diverse signaling systems. Here, we show that the major form of the kinase Shaggy (Sgg), the GSK-3 fly ortholog, is negatively regulated during insulin-like/phosphatidylinositol 3-kinase (PI3K) signaling in vivo. Since genetic studies of Drosophila melanogaster had previously shown that Wingless (Wg) signaling also acts to antagonize Sgg, we investigate how the kinase might integrate, or else discriminate, signaling inputs by Wg and insulin. Using Drosophila cell line assays, we found, in contrast to previous reports, that Wg induces accumulation of its transducer Armadillo (Arm)/beta-catenin without significant alteration of global Sgg-specific activity. In agreement with a previous study using human GSK-3beta, Wg did not cause phosphorylation changes of the Ser9 or Tyr214 regulatory phosphorylated sites of Sgg. Conversely, as shown in mammalian systems, insulin-induced inhibition of Sgg-specific activity by phosphorylation at the N-terminal pseudosubstrate site (Ser9) did not induce Arm/beta-catenin accumulation, showing selectivity in response to the different signaling pathways. Interestingly, a minigene bearing a Ser9-to-Ala change rescued mutant sgg without causing abnormal development, suggesting that the regulation of Sgg via the inhibitory pseudosubstrate domain is dispensable for many aspects of its function. Our studies of Drosophila show that Wg and insulin or PI3K pathways do not converge on Sgg but that they exhibit cross-regulatory interactions.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Glucógeno Sintasa Quinasa 3/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/genética , Insulina/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Proteína Wnt1
5.
Autophagy ; 10(10): 1861-3, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25126730

RESUMEN

Autophagosomes arise in yeast and animals from the sealing of a cup-shaped double-membrane precursor, the phagophore. The concerted action of about 30 evolutionarily conserved autophagy related (ATG) proteins lies at the core of this process. However, the mechanisms allowing phagophore generation and its differentiation into a sealed autophagosome are still not clear in detail, and very little is known in plants. This is due in part to the scarcity of structurally informative, real-time imaging data of ATG proteins at the phagophore site. Among these, the ATG5 complex directs anchoring of ATG8 to the phagophore, an event required for membrane expansion. Detailed real-time and 3D imaging of ATG5, ATG8, and an ER marker at the expanding phagophore allowed us to propose a model for autophagosome formation in plants. This model implies tight connections of the growing phagophore with the outer face of the cortical endoplasmic reticulum and prompts new questions on the mechanism of autophagosome biogenesis.


Asunto(s)
Autofagia , Fagosomas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Mamíferos/metabolismo , Modelos Biológicos , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 5: 4121, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24947672

RESUMEN

Autophagosomes are the organelles responsible for macroautophagy and arise, in yeast and animals, from the sealing of a cup-shaped double-membrane precursor, the phagophore. How the phagophore is generated and grows into a sealed autophagosome is still not clear in detail, and unknown in plants. This is due, in part, to the scarcity of structurally informative, real-time imaging data of the required protein machinery at the phagophore formation site. Here we find that in intact living Arabidopsis tissue, autophagy-related protein ATG5, which is essential for autophagosome formation, is present at the phagophore site from early, sub-resolution stages and later defines a torus-shaped structure on a flat cisternal early phagophore. Movement and expansion of this structure are accompanied by the underlying endoplasmic reticulum, suggesting tight connections between the two compartments. Detailed real-time and 3D imaging of the growing phagophore are leveraged to propose a model for autophagosome formation in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Fagosomas/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia , Imagenología Tridimensional , Microscopía Fluorescente , Fagosomas/metabolismo
7.
Funct Plant Biol ; 29(1): 55-61, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32689451

RESUMEN

Ten proteins differentially regulated by progressive drought stress in Arabidopsis Columbia wild-type, axr1-3 and axr2-1auxin-insensitive mutants, were identified from internal amino acid microsequencing. These proteins fell into two categories: (i) stress-related proteins, known to be induced by rapid water stress via abscisic acid (ABA)-dependent or -independent pathways [late embryogenesis abundant (LEA)-like and heat shock cognate (HS) 70, respectively], or in response to pathogens or oxidative stress [ß-1,3 glucanase (BG), annexin] and (ii) metabolic enzymes [glutamine synthetase (GS), fructokinase (Frk), caffeoyl-CoA-3-O-methyltransferase (CCoAOMT)]. The differential behaviour of these proteins highlighted a role for AXR2 and/or AXR1 in the regulation of their abundance during drought adaptation. In particular, reduced induction of RD29B, GS and annexin, and overexpression of BG2 were observed specifically in the axr1-3 mutant, which is dramatically affected in several ABA-dependent drought adaptive responses, such as drought rhizogenesis. Altogether these results indicate cross-talk between auxin- and ABA-signalling in Arabidopsis drought responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA