Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124669, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38909560

RESUMEN

The synthesis of carbon quantum dots (CQDs) using chemical precursors with different organic groups is a strategy to improve optical properties and expand applications in several fields of research such as Analytical Chemistry. Ascorbic acid and riboflavin are widely used in human food supplementation, making quality monitoring of these vitamin supplements relevant and necessary. In this work, disodium ethylenediaminetetraacetic, sodium thiosulfate and urea were applied to obtain CQDs through a single-step microwave-assisted synthesis. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared spectroscopy, zeta potential measurements, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The synthesized nanoparticles exhibited satisfactory and stable optical properties with luminescence at 430 nm, water solubility, and fluorescence quantum yield of 8.9 %. They were applied in the quantification of ascorbic acid and riboflavin in vitamin supplements. The fluorescence mechanisms observed were dynamic quenching for the CQDs/Cr(VI) sensor, followed by a return of fluorescence in the presence of ascorbic acid, and static quenching and inner filter effect in the interaction with riboflavin. Factorial designs 23 and 24 were used to optimize the analytical parameters. The CQDs/Cr(VI) sensor used in the determination of ascorbic acid, employing an on-off-on strategy, resulted in a linear range of 0.5 to 50 µg mL-1 and a limit of detection of 0.15 µg mL-1. The ratiometric fluorescence used in the determination of riboflavin resulted in a linear range of 0.1 to 7 µg mL-1 and a limit of detection of 0.09 µg mL-1. The analytical results for ascorbic acid were compared to the reference method of the Brazilian pharmacopeia, showing accuracy and precision according to the Brazilian Health Regulation Agency. Therefore, the synthesized CQDs were used to determine ascorbic acid and riboflavin in vitamin supplements, and the application of this nanomaterial can be expanded to different analytes and matrices, using simple and low-cost analysis techniques.


Asunto(s)
Ácido Ascórbico , Carbono , Suplementos Dietéticos , Microondas , Puntos Cuánticos , Riboflavina , Espectrometría de Fluorescencia , Puntos Cuánticos/química , Riboflavina/análisis , Ácido Ascórbico/análisis , Carbono/química , Espectrometría de Fluorescencia/métodos , Suplementos Dietéticos/análisis , Límite de Detección , Vitaminas/análisis , Difracción de Rayos X
2.
Food Chem ; 365: 130472, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265641

RESUMEN

Parabens are compounds used as chemical preservatives in cosmetics, drugs, and food. Some can cause adverse effects on human health. In this study, a square wave voltammetric method using a glassy carbon electrode was developed for simultaneous determination of methyl, ethyl, propyl, and butyl parabens in sweeteners. To overcome the strong overlap of voltammetric signals caused by calibrated and uncalibrated constituents, unfolded partial least squares with residual bilinearization (U-PLS/RBL) was used. The U-PLS/RBL calibration model was constructed and evaluated using a validation set obtained using a Taguchi design. Satisfactory and unbiased results were obtained with a linear response in the range of 0.78-4.48 µmol L-1 and recoveries from 82.64% to 121.77%. As far as the authors know, a voltammetric method that simultaneously determines four parabens in complex samples such as sweeteners without any previous pretreatment has not yet been reported in the literature.


Asunto(s)
Parabenos , Edulcorantes , Calibración , Electrodos , Humanos , Análisis de los Mínimos Cuadrados
3.
Talanta ; 154: 134-40, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27154658

RESUMEN

Tryptamine, a biogenic amine, is an indole derivative with an electrophilic substituent at the C3 position of the pyrrole ring of the indole moiety. The electrochemical oxidation of tryptamine was investigated using glassy carbon electrode (GCE), and focusing on trace level determination in food products by square wave adsorptive stripping voltammetry (SWAdSV). The electrochemical responses of tryptamine were evaluated using differing voltammetric techniques over a wide pH range, a quasi-reversible electron-transfer to redox system represented by coupled peaks P1-P3, and an irreversible reaction for peak P2 were demonstrated. The proton and electron counts associated with the oxidation reactions were estimated. The nature of the mass transfer process was predominantly diffusion-limited for the oxidation process of P1, the most selective and sensitive analytical response (acetate buffer solution pH 5.3), being used for the development of SWAdSV method, under optimum conditions. The excellent response allowed the development of an electroanalytical method with a linear response range of from 4.7-54.5)×10(-)(8)molL(-1), low detection limit (0.8×10(-)(9)molL(-)(1)), and quantification limit (2.7×10(-9)molL(-1)), and acceptable levels of repeatability (3.6%), and reproducibility (3.8%). Tryptamine content was determined in bananas, tomatoes, cheese (mozzarella and gorgonzola), and cold meats (chicken sausage and pepperoni sausage), yielding recoveries above 90%, with excellent analytical performance using simple and low cost instrumentation.


Asunto(s)
Triptaminas/análisis , Adsorción , Carbono , Electrodos , Reproducibilidad de los Resultados
4.
Sci Total Environ ; 572: 138-146, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27494660

RESUMEN

This is the first nationwide survey of emerging contaminants in Brazilian waters. One hundred drinking water samples were investigated in 22 Brazilian state capitals. In addition, seven source water samples from two of the most populous regions of the country were evaluated. Samples were collected from June to September of 2011 and again during the same period in 2012. The study covered emerging contaminants of different classes, including hormones, plasticizers, herbicides, triclosan and caffeine. The analytical method for the determination of the compounds was based on solid-phase extraction followed by analysis via liquid chromatography electrospray triple-quadrupole mass spectrometry (LC-MS/MS). Caffeine, triclosan, atrazine, phenolphthalein and bisphenol A were found in at least one of the samples collected in the two sampling campaigns. Caffeine and atrazine were the most frequently detected substances in both drinking and source water. Caffeine concentrations in drinking water ranged from 1.8ngL-1 to values above 2.0µgL-1 while source-water concentrations varied from 40ngL-1 to about 19µgL-1. For atrazine, concentrations were found in the range from 2.0 to 6.0ngL-1 in drinking water and at concentrations of up to 15ngL-1 in source water. The widespread presence of caffeine in samples of treated water is an indication of the presence of domestic sewage in the source water, considering that caffeine is a compound of anthropogenic origin.


Asunto(s)
Agua Potable/análisis , Agua Dulce/análisis , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Brasil , Monitoreo del Ambiente
5.
Talanta ; 119: 509-16, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24401449

RESUMEN

Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations.


Asunto(s)
Boro/química , Diamante/química , Técnicas Electroquímicas/instrumentación , Electrodos , Xilitol/análisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA