Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Cell Physiol ; 57(6): 1179-88, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27121976

RESUMEN

The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between plant and environment. Homologs of the ATP-binding cassette (ABC) transporter AtABCG32/HvABCG31 clade are necessary for the formation of a functional cuticle in both monocots and dicots. Here we characterize the osabcg31 knockout mutant and hairpin RNA interference (RNAi)-down-regulated OsABCG31 plant lines having reduced plant growth and a permeable cuticle. The reduced content of cutin in leaves and structural alterations in the cuticle and at the cuticle-cell wall interface in plants compromised in OsABCG31 expression explain the cuticle permeability. Effects of modifications of the cuticle on plant-microbe interactions were evaluated. The cuticular alterations in OsABCG31-compromised plants did not cause deficiencies in germination of the spores or the formation of appressoria of Magnaporthe oryzae on the leaf surface, but a strong reduction of infection structures inside the plant. Genes involved in pathogen resistance were constitutively up-regulated in OsABCG31-compromised plants, thus being a possible cause of the resistance to M. oryzae and the dwarf growth phenotype. The findings show that in rice an abnormal cuticle formation may affect the signaling of plant growth and defense.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Resistencia a la Enfermedad , Magnaporthe/fisiología , Mutación/genética , Oryza/anatomía & histología , Oryza/inmunología , Epidermis de la Planta/genética , Proteínas de Plantas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Lípidos de la Membrana/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Fenotipo , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 169(4): 2935-49, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26424158

RESUMEN

Functional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g. flowering and floral organ identity) as well as stress-related developmental processes, such as abscission, fruit ripening, and senescence. Overexpression of the rice (Oryza sativa) MADS26 gene in rice has revealed a possible function related to stress response. Here, we show that OsMADS26-down-regulated plants exhibit enhanced resistance against two major rice pathogens: Magnaporthe oryzae and Xanthomonas oryzae. Despite this enhanced resistance to biotic stresses, OsMADS26-down-regulated plants also displayed enhanced tolerance to water deficit. These phenotypes were observed in both controlled and field conditions. Interestingly, alteration of OsMADS26 expression does not have a strong impact on plant development. Gene expression profiling revealed that a majority of genes misregulated in overexpresser and down-regulated OsMADS26 lines compared with control plants are associated to biotic or abiotic stress response. Altogether, our data indicate that OsMADS26 acts as an upstream regulator of stress-associated genes and thereby, a hub to modulate the response to various stresses in the rice plant.


Asunto(s)
Resistencia a la Enfermedad/genética , Sequías , Proteínas de Dominio MADS/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Adaptación Fisiológica/genética , Secuencia de Bases , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Magnaporthe/fisiología , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xanthomonas/fisiología
3.
Plant Cell Environ ; 37(12): 2738-53, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24738718

RESUMEN

Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas/genética , Morfogénesis/genética , Mutación/genética , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Calcio/farmacología , Oscuridad , Ecotipo , Ácido Egtácico/farmacología , Flavonoides/biosíntesis , Genes Supresores , Gravitación , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Fenotipo , Raíces de Plantas/genética , Tacto
4.
Plant Cell ; 23(3): 1124-37, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21447792

RESUMEN

Peroxidases have been shown to be involved in the polymerization of lignin precursors, but it remains unclear whether laccases (EC 1.10.3.2) participate in constitutive lignification. We addressed this issue by studying laccase T-DNA insertion mutants in Arabidopsis thaliana. We identified two genes, LAC4 and LAC17, which are strongly expressed in stems. LAC17 was mainly expressed in the interfascicular fibers, whereas LAC4 was expressed in vascular bundles and interfascicular fibers. We produced two double mutants by crossing the LAC17 (lac17) mutant with two LAC4 mutants (lac4-1 and lac4-2). The single and double mutants grew normally in greenhouse conditions. The single mutants had moderately low lignin levels, whereas the stems of lac4-1 lac17 and lac4-2 lac17 mutants had lignin contents that were 20 and 40% lower than those of the control, respectively. These lower lignin levels resulted in higher saccharification yields. Thioacidolysis revealed that disrupting LAC17 principally affected the deposition of G lignin units in the interfascicular fibers and that complementation of lac17 with LAC17 restored a normal lignin profile. This study provides evidence that both LAC4 and LAC17 contribute to the constitutive lignification of Arabidopsis stems and that LAC17 is involved in the deposition of G lignin units in fibers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Lacasa/genética , Lignina/biosíntesis , Tallos de la Planta/metabolismo , Haz Vascular de Plantas/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Inflorescencia/genética , Inflorescencia/metabolismo , Lacasa/aislamiento & purificación , Lacasa/metabolismo , Lignina/análisis , Lignina/genética , Mutación , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Haz Vascular de Plantas/enzimología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
5.
New Phytol ; 198(1): 59-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23398515

RESUMEN

TT8/bHLH042 is a key regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis thaliana. TT8 transcriptional activity has been studied extensively, and relies on its ability to form, with several R2R3-MYB and TTG1 (WD-Repeat protein), different MYB-bHLH-WDR (MBW) protein complexes. By contrast, little is known on how TT8 expression is itself regulated. Transcriptional regulation of TT8 expression was studied using molecular, genetic and biochemical approaches. Functional dissection of the TT8 promoter revealed its modular structure. Two modules were found to specifically drive TT8 promoter activity in PA- and anthocyanin-accumulating cells, by differentially integrating the signals issued from different regulators, in a spatio-temporal manner. Interestingly, this regulation involves at least six different MBW complexes, and an unpredicted positive feedback regulatory loop between TT8 and TTG2. Moreover, the results suggest that some putative new regulators remain to be discovered. Finally, specific cis-regulatory elements through which TT8 expression is regulated were identified and characterized. Together, these results provide a molecular model consistent with the specific and highly regulated expression of TT8. They shed new light into the transcriptional regulation of flavonoid biosynthesis and provide new clues and tools for further investigation in Arabidopsis and other plant species.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Flavonoides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Transcripción Genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Complejos Multiproteicos/metabolismo , Mutación/genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
6.
J Exp Bot ; 63(10): 3749-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442426

RESUMEN

Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11-64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Variación Genética , Metaboloma , Sitios de Carácter Cuantitativo , Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cruzamiento , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Filogenia , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Front Plant Sci ; 11: 1265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013945

RESUMEN

BACKGROUND: Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS: Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS: Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.

8.
Front Plant Sci ; 7: 1558, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833621

RESUMEN

Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection.

9.
Science ; 330(6010): 1543-6, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148392

RESUMEN

Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.


Asunto(s)
Ascomicetos/genética , Eliminación de Gen , Genes Fúngicos , Genoma Fúngico , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Adaptación Fisiológica , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Metabolismo de los Hidratos de Carbono , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Enzimas/genética , Enzimas/metabolismo , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/genética , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Retroelementos , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA