Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 21(5): 176, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572701

RESUMEN

This paper presents a rational workflow for developing enabling formulations, such as amorphous solid dispersions, via hot-melt extrusion in less than a year. First, our approach to an integrated product and process development framework is described, including state-of-the-art theoretical concepts, modeling, and experimental characterization described in the literature and developed by us. Next, lab-scale extruder setups are designed (processing conditions and screw design) based on a rational, model-based framework that takes into account the thermal load required, the mixing capabilities, and the thermo-mechanical degradation. The predicted optimal process setup can be validated quickly in the pilot plant. Lastly, a transfer of the process to any GMP-certified manufacturing site can be performed in silico for any extruder based on our validated computational framework. In summary, the proposed workflow massively reduces the risk in product and process development and shortens the drug-to-market time for enabling formulations.


Asunto(s)
Química Farmacéutica , Calor , Composición de Medicamentos , Modelos Químicos , Solubilidad
2.
Polymers (Basel) ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447557

RESUMEN

In this work, we report the use of the hot melt extrusion method in harsh extrusion conditions, i.e., screw rotation speed of 250 rpm, temperature above 100 °C, and two mixing zones, in order to obtain an amorphous dispersion of an active pharmaceutical ingredient (API) that is sparingly soluble in water. As a polymer matrix Eudragit EPO (E-EPO) and as an API ibuprofen (IBU) were used in the research. In addition, the plasticizer Compritol 888 ATO (COM) was tested as a factor potentially improving processing parameters and modifying the IBU release profile. In studies, 25% by weight of IBU, 10% of COM and various extrusion temperatures, i.e., 90, 100, 120, 130, and 140 °C, were used. Hot melt extrusion (HME) temperatures were selected based on the glass transition temperature of the polymer matrix (Tg = 42 °C) and the melting points of IBU (Tm = 76 °C) and COM (Tm = 73 °C), which were tested by differential scanning calorimetry (DSC). The thermal stability of the tested compounds, determined on the basis of measurements carried out by thermogravimetric analysis (TGA), was also taken into account. HME resulted in amorphous E-EPO/IBU solid dispersions and solid dispersions containing a partially crystalline plasticizer in the case of E-EPO/IBU/COM extrudates. Interactions between the components of the extrudate were also studied using infrared spectroscopy (FTIR-ATR). The occurrence of such interactions in the studied system, which improve the stability of the obtained solid polymer dispersions, was confirmed. On the basis of DSC thermograms and XRPD diffractograms, it was found that amorphous solid dispersions were obtained. In addition, their stability was confirmed in accelerated conditions (40 °C, 75% RH) for 28 days and 3 months. The release profiles of prepared tablets showed the release of 40% to 63% of IBU from the tablets within 180 min in artificial gastric juice solution, with the best results obtained for tablets with E-EPO/IBU extrudate prepared at a processing temperature of 140 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA