Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Res ; 251(Pt 1): 118612, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442814

RESUMEN

Landfills, as a source of potentially toxic elements (PTEs), pose a threat to the environment and human health. A literature review was conducted to explore the diversity of arthropods inhabiting solid waste landfills, as well as on the bioaccumulation of PTEs by arthropods. This review presents scientific papers over the last 20 years. Their importance in landfill ecosystems has been the subject of research; however, the issue of the accumulation of compounds such as toxic elements is emphasized only in a few studies. The bioaccumulation of PTEs was studied for 10 arthropod species that founded in landfills: Orthomorpha coarctata and Trigoniulus corallinus (class Diplopoda), Armadillidium vulgare and Trachelipus rathkii (class Malacostraca), the 6 species of the class Insecta - Zonocerus variegatus, Anacanthotermes ochraceus, Macrotermes bellicosus, Austroaeschna inermis, Calathus fuscipes and Harpalus rubripes.


Asunto(s)
Artrópodos , Instalaciones de Eliminación de Residuos , Animales , Monitoreo del Ambiente , Bioacumulación , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
2.
J Exp Bot ; 74(17): 5255-5272, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37249250

RESUMEN

Pistia stratiotes is an aquatic plant with a complex structure that allows it to stay afloat. It grows quickly, and in large numbers becomes an undesirable plant as an invasive species. Describing the dynamics of a water drop splash on P. stratiotes leaves can contribute to increasing knowledge of its behavior and finding alternative methods for eradicating it or using it for the benefit of the environment. The non-wettable surface of P. stratiotes presents a complex structure-simple uniseriate trichomes and also ridges and veins. We analyzed the drop impact on a leaf placed on the water surface and recorded it by high-speed cameras. Based on the recordings, quantitative and qualitative analyses were performed. After impacting the leaf, the water drop spread until it reached its maximum surface area accompanied by the ejection of early droplets in the initial stage. Thereafter, three scenarios of water behavior were observed: (i) drop receding and stabilization; (ii) drop receding and ejection of late droplets formed in the later stage as an effect of elastic deformation of the leaf; and (iii) drop breaking apart and ejection of late droplets. The results indicated that the increasing kinetic energy of the impacting drops expressed by the Weber number and the complex leaf surface have an effect on the course of the splash. The simple uniseriate trichomes of the P. stratiotes leaf and the high energy of the falling drops were responsible for the formation and characteristics of the early droplets. The presence of ridges and veins and the leaf's mechanical response had an impact on the occurrence of late droplets.


Asunto(s)
Araceae , Interacciones Hidrofóbicas e Hidrofílicas , Plantas , Hojas de la Planta/fisiología , Agua/análisis
3.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590816

RESUMEN

The multiphase splash phenomenon is especially interesting in the context of environmental protection, as it could be a mechanism for transporting various types of pollution. A numerical 3D multiphase transport model was applied to a splash that occurred under the impact of a petrol drop on the water surface. The splash phenomenon in immiscible liquids was simulated using the multiphaseInterFoam solver, i.e., a part of the OpenFOAM computational fluid dynamics software implementing the finite volume method (FVM) for space discretization. Thirteen variants with a variable drop size (3.00-3.60 mm) or drop velocity (3.29-3.44 m/s) were conducted and validated experimentally based on splash images taken by a high-speed camera (2800 fps). Based on the numerical simulation, it was possible to analyse aspects that were difficult or impossible to achieve experimentally due to the limitations of the image analysis method. The aspects included the cavity spread, the jet forming moment, and, notably, the scale of the petroleum contamination spread in the splash effect. The simulations showed that droplets detaching from the crown did not consist of pure water but were mostly a "mixture" of water and petrol or petrol alone. The applied modelling workflow is an efficient way to simulate three-phase splash phenomena.


Asunto(s)
Hidrodinámica , Agua , Simulación por Computador
4.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36616719

RESUMEN

Water erosion is an unfavorable phenomenon causing soil degradation. One of the factors causing water erosion is heavy or prolonged rainfall, the first effect of which is the deformation of the soil surface and the formation of microcraters. This paper presents an overview of research methods allowing the study of microcraters as well as the process of their formation. A tabular summary of work on the measurements of various quantities describing the craters is presented. The said quantities are divided into three groups: (i) static quantities, (ii) dynamic quantities, and (iii) dimensionless parameters. The most important measurement methods used to study crater properties, such as (i) basic manual measurement methods, (ii) photography, (iii) high-speed imaging, (iv) profilometers, (v) 3D surface modelling, and (vi) computed tomography (CT) and its possibilities and limitations are discussed. The main challenges and prospects of research on soil surface deformation are also presented.

5.
Molecules ; 24(21)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684030

RESUMEN

The cell walls of fungi are composed of glycoproteins, chitin, and α- and ß-glucans. Although there are many reports on ß-glucans, α-glucan polysaccharides are not yet fully understood. This review characterizes the physicochemical properties and functions of (1→3)-α-d-glucans. Particular attention has been paid to practical application and the effect of glucans in various respects, taking into account unfavourable effects and potential use. The role of α-glucans in plant infection has been proven, and collected facts have confirmed the characteristics of Aspergillus fumigatus infection associated with the presence of glucan in fungal cell wall. Like ß-glucans, there are now evidence that α-glucans can also stimulate the immune system. Moreover, α-d-glucans have the ability to induce mutanases and can thus decompose plaque.


Asunto(s)
Aspergilosis/microbiología , Pared Celular/química , Glucanos/química , Enfermedades de las Plantas/microbiología , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidad , Quitina/química , Hongos/química , Glicoproteínas/química , Polisacáridos/química , beta-Glucanos/química
6.
Biofouling ; 34(2): 149-161, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29319345

RESUMEN

Enterococcus faecalis is one of the most significant bacterial pathogens associated with the first-week mortality of chickens. Here, the surface properties of bacterial cells and the selected virulence factors of E. faecalis strains isolated from the hearts of clinically healthy broiler chickens were studied. Investigations were carried out on live and autoclaved cells. E. faecalis (ATCC 29212) was used as a reference strain. The bacterial cells revealed different haemolytic activities. Their surface free energy was dominated by the hydrophobic component. The cell walls of the bird isolates showed slightly weaker acidic characteristics than those of E. faecalis (ATCC 29212). Moreover, the bacterial cells from the chicken hearts showed higher electrophoretic mobility and surface electrical charge than the reference strain, and consequently demonstrated a low ability to form biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Pollos/microbiología , Enterococcus faecalis/aislamiento & purificación , Corazón/microbiología , Animales , Enterococcus faecalis/metabolismo , Propiedades de Superficie , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
7.
Int J Phytoremediation ; 20(4): 338-342, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29584465

RESUMEN

It was hypothesized that electromagnetic field (EMF) pretreatment of white mustard (Sinapis alba L.) seeds could increase the accumulation of non-essential, pollutant heavy metals such as cadmium (Cd) in shoots. Seeds of white mustard were treated with either 60 or 120 mT of alternating EMF (50 Hz) for 1 minute and then grown in a Petri dish in the presence of Cd, in comparison to the control (seeds grown without EMF pretreatment). Biomass production and content of calcium (Ca) and Cd in seedling shoots were measured. The Cd content in shoots from the EMF-treated seeds was higher in both variants than in the control (by 73% and 78%, respectively; p < 0.05). In plants treated with 60 mT, the Ca content was slightly, but significantly, lower (3%) than in the control. EMF stimulation did not affect the biomass production. The results have shown potential benefits of this physical seed pretreatment method in the context of cadmium phytoextraction, but more research is needed.


Asunto(s)
Cadmio/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Campos Electromagnéticos , Semillas/química , Sinapis
8.
Sensors (Basel) ; 18(8)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061490

RESUMEN

The possibility of detecting low levels of soil pollution by petroleum fuel using an electronic nose (e-nose) was studied. An attempt to distinguish between pollution caused by petrol and diesel oil, and its relation to the time elapsed since the pollution event was simultaneously performed. Ten arable soils, belonging to various soil groups from the World Reference Base (WRB), were investigated. The measurements were performed on soils that were moistened to field capacity, polluted separately with both hydrocarbons, and then allowed to dry slowly over a period of 180 days. The volatile fingerprints differed throughout the course of the experiment, and, by its end, they were similar to those of the unpolluted soils. Principal component analysis (PCA) and artificial neural network (ANN) analysis showed that the e-nose results could be used to detect soil contamination and distinguish between pollutants and contamination levels.

9.
Molecules ; 23(2)2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29473852

RESUMEN

This study was focused on the description of interaction between Cu2+ ions and the 1:1 mono- and dirhamnolipid mixtures in the premicellar and aggregated state in water and 20 mM KCl solution at pH 5.5 and 6.0. The critical micelle concentration of biosurfactants was determined conductometrically and by the pH measurements. Hydrodynamic diameter and electrophoretic mobility were determined in micellar solutions using dynamic light scattering and laser Doppler electrophoresis, respectively. The copper immobilization by rhamnolipids, methylglycinediacetic acid (MGDA), and ethylenediaminetetraacetic acid (EDTA) was estimated potentiometrically for the Cu2+ to chelating agent molar ratio from 16:100 to 200:100. The degree of ion binding and the complex stability constant were calculated at a 1:1 metal to chelant molar ratio. The aggregates of rhamnolipids (diameter of 43-89 nm) were negatively charged. Biosurfactants revealed the best chelating activities in premicellar solutions. For all chelants studied the degree of metal binding decreased with the increasing concentration of the systems. The presence of K⁺ lowered Cu2+ binding by rhamnolipids, but did not modify the complex stability significantly. Immobilization of Cu2+ by biosurfactants did not cause such an increase of acidification as that observed in MGDA and EDTA solutions. Rhamnolipids, even in the aggregated form, can be an alternative for the classic chelating agents.


Asunto(s)
Cobre/química , Glucolípidos/química , Iones/química , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula
10.
Appl Microbiol Biotechnol ; 101(8): 3415-3425, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28004153

RESUMEN

Accumulation of toxic metal ions in food and water is nowadays a growing health-related problem. One detoxification method involves the use of microorganisms naturally inhabiting the gastrointestinal tract (GIT). The purpose of this study was to prove that lactic acid bacteria derived from the GIT are able to effectively remove Cd2+ from water solution. Seven strains of lactobacilli, out of 11 examined, showed tolerance to high concentrations of cadmium ions. The metal-removal efficiencies of these seven lactobacilli ranged from 6 to 138.4 µg/h mg. Among these bacteria, Lactobacillus gallinarum and Lactobacillus crispatus belonged to the highest (85%) Cd-removal efficiency class. An analysis of the zeta potential (ζ) indicated that the bacterial cell surface had a negative charge at the pH ranging from 3 to 10. The presence of carboxyl, amide, and phosphate groups was favorable for Cd2+ binding to the cell surface, which found confirmation in FTIR-ATR spectra. Elemental SEM/EDS analysis and TEM imaging not only confirmed the adsorption of Cd2+ on the cell envelope but also gave us a reason to suppose that Lb. crispatus accumulates metal ions inside the cell. Our findings open perspectives for further research on the new biological function of GIT lactobacilli as natural biosorbents.


Asunto(s)
Cadmio/metabolismo , Tracto Gastrointestinal/microbiología , Lactobacillus/efectos de los fármacos , Lactobacillus/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adsorción , Cadmio/farmacología , Concentración de Iones de Hidrógeno , Iones , Lactobacillus/citología , Microscopía Electrónica de Transmisión , Contaminantes Químicos del Agua/farmacología
11.
Sensors (Basel) ; 16(6)2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27338404

RESUMEN

The possibility of distinguishing different soil moisture levels by electronic nose (e-nose) was studied. Ten arable soils of various types were investigated. The measurements were performed for air-dry (AD) soils stored for one year, then moistened to field water capacity and finally dried within a period of 180 days. The volatile fingerprints changed during the course of drying. At the end of the drying cycle, the fingerprints were similar to those of the initial AD soils. Principal component analysis (PCA) and artificial neural network (ANN) analysis showed that e-nose results can be used to distinguish soil moisture. It was also shown that different soils can give different e-nose signals at the same moistures.

12.
Sensors (Basel) ; 15(1): 1-21, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25545263

RESUMEN

A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

13.
Sci Rep ; 14(1): 6264, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491088

RESUMEN

Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.


Asunto(s)
Fabaceae , Rhizobium leguminosarum , Rhizobium , Trifolium , Rhizobium leguminosarum/genética , Simbiosis/genética , Fabaceae/genética , Trifolium/genética , Fijación del Nitrógeno , Filogenia , Rhizobium/genética , ADN Bacteriano/genética
14.
Sci Total Environ ; 871: 162127, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764535

RESUMEN

Grassland soils are climate-dependent ecosystems that have a significant greenhouse gas mitigating function through their ability to store large amounts of carbon (C). However, what is often not recognized is that they can also exhibit a high methane (CH4) uptake capacity that could be influenced by future increases in atmospheric carbon dioxide (CO2) concentration and variations in temperature and water availability. While there is a wealth of information on C sequestration in grasslands there is less consensus on how climate change impacts on CH4 uptake or the underlying mechanisms involved. To address this, we assessed existing knowledge on the impact of climate change components on CH4 uptake by grassland soils. Increases in precipitation associated with soils with a high background soil moisture content generally resulted in a reduction in CH4 uptake or even net emissions, while the effect was opposite in soils with a relatively low background moisture content. Initially wet grasslands subject to the combined effects of warming and water deficits may absorb more CH4, mainly due to increased gas diffusivity. However, in the longer-term heat and drought stress may reduce the activity of methanotrophs when the mean soil moisture content is below the optimum for their survival. Enhanced plant productivity and growth under elevated CO2, increased soil moisture and changed nutrient concentrations, can differentially affect methanotrophic activity, which is often reduced by increasing N deposition. Our estimations showed that CH4 uptake in grassland soils can change from -57.7 % to +6.1 % by increased precipitation, from -37.3 % to +85.3 % by elevated temperatures, from +0.87 % to +92.4 % by decreased precipitation, and from -66.7 % to +27.3 % by elevated CO2. In conclusion, the analysis suggests that grasslands under the influence of warming and drought may absorb even more CH4, mainly because of reduced soil water contents and increased gas diffusivity.

15.
PLoS One ; 18(5): e0285611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37172020

RESUMEN

The splash phenomenon and the scale of the surface deformation of post-fire soils in the variants of various hydrophobicity and moisture content were studied. Splash erosion is the result of the impact of a single water drop and was analysed using high-speed cameras, while the surface deformation was parameterized using a structured light scanner. The extremely water-repellent variant (dry_V) showed distinct differences, expressed primarily in the number of ejected particles, which was 2.5 times higher than in the four soils with lower levels of hydrophobicity. It was also observed that as a result of the drop impact onto an extremely hydrophobic soil surface, a form known as liquid marble was created inside the crater. Soil moisture content determined the manner, scale and dynamics of the splash erosion. In the case of wet soils, the phenomenon proceeded up to five times faster, and as a result of the drop impact, a large number of fine particles were ejected, which reached nearly twice the velocities and three times the displacement distances compared to the dry soil group. However, the particles and/or aggregate splashed on the dry samples were larger, which also translated into the formation of craters up to twice as extensive as those in the wet soils.


Asunto(s)
Suelo , Agua , Suelo/química , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
16.
Sci Rep ; 13(1): 8306, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221262

RESUMEN

The breeding of insects generates waste in the form of insect excrement and feed residues. In addition, a specific chitinous waste in the form of insect larvae and pupae exuvia is also left. Recent research tries to manage it, e.g., by producing chitin and chitosan, which are value-added products. The circular economy approach requires testing new, non-standard management methods that can develop products with unique properties. To date, the possibility of biochar production from chitinous waste derived from insects has not been evaluated. Here we show that the puparia of Hermetia illucens are suitable for biochar production, which in turn exhibits original characteristics. We found that the biochars have a high nitrogen level, which is rarely achievable in materials of natural origin without artificial doping. This study presents a detailed chemical and physical characterization of the biochars. Moreover, ecotoxicological analysis has revealed the biochars' stimulation effect on plant root growth and the reproduction of the soil invertebrate Folsomia candida, as well as the lack of a toxic effect on its mortality. This predisposes these novel materials with already built-in stimulating properties to be used in agronomy, for example as a carriers for fertilizers or beneficial bacteria.


Asunto(s)
Quitosano , Dípteros , Animales , Quitina , Suelo
17.
PLoS One ; 17(1): e0262203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995324

RESUMEN

Soil splash is the first step in the process of water erosion, where impacting raindrops cause the detachment and transport of soil material. One of the factors that strongly influences the magnitude of soil splash is the incline of the surface (slope). The aim of this study was to investigate the effect of the slope on the course of the splash phenomenon caused by single-drop impact (one drop impact per soil sample), with respect to the mass and proportions of the ejected material, taking into account its division into solid and liquid phases i.e. soil and water. The investigation was carried out using three types of soil with different textures, in moistened (pressure head corresponding to -1.0 kPa) and air-dry (-1500 kPa) conditions. The soil samples were on three angles of slope, being 5°, 15°, and 30°, respectively. After a single-drop impact with a diameter of 4.2 mm, the ejected material was collected using a splash cup. The following quantities of splashed material were measured: the total mass, the mass of the solid phase, and the mass of the liquid phase. Additionally, the distribution and proportions (soil/water) of the splashed material were analysed in both the upslope and downslope directions. It was found that: (i) the change of slope had a variable influence on the measured quantities for different soils; (ii) in the case of moistened samples, the measured values were mainly influenced by the texture, while in the dry samples, by the angle of the slope; (iii) with the increase of slope, the splashed material was mostly ejected in the downslope direction (irrespective of moisture conditions); (iv) in the moistened samples, the ejected material consisted mostly of water, while in the dry samples it was soil-this occurred for material ejected both upslope and downslope. The obtained results are important for improving the physical description of the process of splash erosion. A more thorough understanding and better recognition of the mechanisms governing this phenomenon at all stages could contribute to the development of more effective methods for protecting soil against erosion.


Asunto(s)
Transición de Fase , Lluvia , Suelo/química , Agua/análisis , Agua/química , Fenómenos Mecánicos , Propiedades de Superficie
18.
Biology (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36671718

RESUMEN

Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.

19.
PLoS One ; 17(3): e0265546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35333882

RESUMEN

The formation of craters is an important issue in the investigations of the surface of the earth and other planets. The aim of the study was to check whether the different textures of sand beds affect the size and dynamics of the formation of craters and ejection curtain after high-velocity impacts. The experiments were conducted using an aluminium impactor at two impact speeds (~700 and ~1300 m∙s-1) and a sand bed composed of either a broad range of sizes (<2.0 mm) or any of the three fractions obtained from it (<0.5, 0.5-1, 1-2 mm). The diameters, depths, wall slope, and rim heights of the resulting craters were measured. The ejecta curtain was characterized by the inclination angle of walls, base diameter, and expansion velocity. The mass of the transferred material and the depth of the impactor penetration were also determined. Additionally, the results were used to calculate dimensionless parameters commonly considered in crater studies (πV, π2 and α). The texture of the sand most clearly influenced the diameters of the craters, its effect could also be seen in the case of the distance covered by the ejected material. This information appears to be relevant for future research, providing some rationale to help assess in which aspects of the phenomenon the texture may be important.


Asunto(s)
Planetas , Arena , Planeta Tierra
20.
Biology (Basel) ; 10(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923892

RESUMEN

Bioaccumulation, expressed as the bioaccumulation factor (BAF), is a phenomenon widely investigated in the natural environment and at laboratory scale. However, the BAF is more suitable for ecological studies, while in small-scale experiments it has limitations, which are discussed in this article. We propose a new indicator, the bioaccumulation index (BAI). The BAI takes into account the initial load of test elements, which are added to the experimental system together with the biomass of the organism. This offers the opportunity to explore the phenomena related to the bioaccumulation and, contrary to the BAF, can also reveal the dilution of element concentration in the organism. The BAF can overestimate bioaccumulation, and in an extremal situation, when the dilution of element concentration during organism growth occurs, the BAF may produce completely opposite results to the BAI. In one of the examples presented in this work (Tschirner and Simon, 2015), the concentration of phosphorous in fly larvae was lower after the experiment than in the younger larvae before the experiment. Because the phosphorous concentration in the feed was low, the BAF indicated a high bioaccumulation of this element (BAF = 14.85). In contrast, the BAI showed element dilution, which is a more realistic situation (BAI = -0.32). By taking more data into account, the BAI seems to be more valid in determining bioaccumulation, especially in the context of entomoremediation research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA